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Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.


http://www.mathworks.com/support/bugreports/
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* “Configure a Model for Code Generation” on page 1-2
+ “Supported Products and Block Usage” on page 1-4

* “Modeling Semantic Considerations” on page 1-26



1 Modeling

Configure a Model for Code Generation

Model configuration parameters determine the method for generating the code and the
resulting format.

1  Open rtwdemo_throttlecntrl and save a copy as throttlecntrl in a writable
location on your MATLAB path.

Note: This model uses Stateflow® software.

2 Open the Configuration Parameters dialog box Solver pane. To generate code for a
model, you must configure the model to use a fixed-step solver. For this example, set
the parameters as noted in the following table.

Parameter Setting Effect on Generated Code
Type Fixed-step Maintains a constant
(fixed) step size, which
is required for code

generation
Solver discrete (no Applies a fixed-step
continuous states) integration technique

for computing the state
derivative of the model

Fixed-step size .001 Sets the base rate; must
be the lowest common
multiple of all rates in the
system

Solver options

Type: |Fixed-step - | Solver: |discrete {no continuous states) -

Fixed-step size (fundamental sample time): 001

3 Open the Code Generation pane and make sure that System target file is set to
grt.tlc.
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Configure a Model for Code Generation

Note: The GRT (Generic Real-Time Target) configuration requires a fixed-step
solver. However, the rsim.tlc system target file supports variable step code
generation.

The system target file (STF) defines a target, which is an environment for generating
and building code for execution on a certain hardware or operating system platform.
For example, one property of a target is code format. The grt configuration requires a
fixed step solver and the rsim.tlc supports variable step code generation.

Open the Code Generation > Custom Code pane, and under Include list of
additional, select Include directories. In the Include directories text field,
enter:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

This directory includes files that are required to build an executable for the model.

Apply your changes and close the dialog box.
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Supported Products and Block Usage

In this section...

“Related Products” on page 1-4

“Simulink Built-In Blocks That Support Code Generation” on page 1-6

“Simulink Block Data Type Support Table” on page 1-25

“Block Set Support for Code Generation” on page 1-25

Related Products

The following table summarizes MathWorks® products that extend and complement
Simulink® Coder™ software. For information about these and other MathWorks

products, see wvw . mathworks.com.

Product

Extends Code Generation Capabilities for ...

Aerospace Blockset™

Aircraft, spacecraft, rocket, propulsion systems,
and unmanned airborne vehicles

Communications System Toolbox™

Physical layer of communication systems

Computer Vision System Toolbox™

Video processing, image processing, and
computer vision systems

Control System Toolbox™

Linear control systems

DSP System Toolbox™

Signal processing systems

Embedded Coder®

Embedded systems, on-target rapid prototyping
boards, microprocessors in mass production, and
real-time simulators

Fixed-Point Designer™

Fixed-point systems

Fuzzy Logic Toolbox™

System designs based on fuzzy logic

Model-Based Calibration Toolbox™

Developing processes for systematically
identifying optimal balance of engine
performance, emissions, and fuel economy,
and reusing statistical models for control
design, hardware-in-the-loop (HIL) testing, or
powertrain simulation
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Supported Products and Block Usage

Product

Extends Code Generation Capabilities for ...

Model Predictive Control Toolbox™

Controllers that optimize performance of multi-
input and multi-output systems that are subject
to input and output constraints

Neural Network Toolbox™

Neural networks

Simulink Desktop Real-Time™

Rapid prototyping or hardware-in-the-loop
(HIL) simulation of control system and signal
processing algorithms

SimDriveline™ Driveline (drivetrain) systems

SimElectronics® Electronic and electromechanical systems

SimHydraulics® Hydraulic power and control systems

SimMechanics™ Three-dimensional mechanical systems

SimPowerSystems™ Systems that generate, transmit, distribute, and
consume electrical power

Simscape™ Systems spanning mechanical, electrical,

hydraulic, and other physical domains as
physical networks

Simulink 3D Animation™

Systems with 3D visualizations

Simulink Design Optimization™

Systems requiring maximum overall system
performance

Simulink Real-Time™

Rapid control prototyping, hardware-in-the-loop
(HIL) simulation, and other real-time testing
applications

Simulink Report Generator™

Automatically generating project documentation
in a standard format

Simulink Verification and Validation™

Applications requiring automated requirements
tracing, model standards compliance checking,
and test harness generation

Stateflow

State machines and flow charts




1 Modeling

Product

Extends Code Generation Capabilities for ...

System Identification Toolbox™ Systems constructed from measured input-

output data

Support exceptions:
* Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

* Nonlinear ARX models that contain custom
regressors

* neuralnet nonlinearities

+ customnet nonlinearities

Vehicle Network Toolbox™ CAN blocks for Accelerator and Rapid

Accelerator simulations and code deployment on

Windows®

Simulink Built-In Blocks That Support Code Generation

The following tables summarize Simulink Coder and Embedded Coder support

for Simulink blocks. There is a table for each block library. For more detail,
including data types each block supports, in the MATLAB® Command Window, type
showblockdatatypetable, or consult the block reference pages.

1-6

Additional Math and Discrete: Additional Discrete
Additional Math and Discrete: Increment/Decrement
Continuous

Discontinuities

Discrete

Logic and Bit Operations

Lookup Tables

Math Operations

Model Verification

Model-Wide Utilities

Ports & Subsystems




Supported Products and Block Usage

Signal Attributes
Signal Routing
Sinks

Sources
User-Defined
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Additional Math and Discrete: Additional Discrete

Block

Support Notes

Fixed-Point State-Space

The Simulink Coder software does not explicitly
group primitive blocks that constitute a nonatomic
masked subsystem block in the generated code.
This flexibility allows for more efficient code
generation. In certain cases, you can achieve
grouping by configuring the masked subsystem
block to execute as an atomic unit by selecting the
Treat as atomic unit option.

Transfer Fcn Direct Form 11

Transfer Fcn Direct Form 11 Time
Varying

Unit Delay Enabled

Unit Delay Enabled External IC

Unit Delay Enabled Resettable

Unit Delay Enabled Resettable
External IC

Unit Delay External IC

Unit Delay Resettable

Unit Delay Resettable External IC

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled
Resettable

Unit Delay With Preview Enabled
Resettable External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable
External RV

*  The Simulink Coder software does not explicitly
group primitive blocks that constitute a
nonatomic masked subsystem block in the
generated code. This flexibility allows for more
efficient code generation. In certain cases, you
can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

*  Generated code might rely on memcpy or
memset (string.h).
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Additional Math and Discrete: Increment/Decrement

Block Support Notes
Decrement Real World The Simulink Coder software does not explicitly group primitive
Tee e Sl blocks that constitute a nona.to.n.nc masked subsystem. b'lock in
Integer the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.
Decrement Time To Zero |Supports code generation.
Decrement To Zero The Simulink Coder software does not explicitly group primitive
I ——— blocks that constitute a nona.to.n.lic masked subsystem. b.lock in
the generated code. This flexibility allows for more efficient code
Increment Stored generation. In certain cases, you can achieve grouping by configuring
Integer the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.
Continuous
Block Support Notes
Derivative Not recommended for production-quality code. Relates to resource
Integrator limits and restrictions on speed and memory often found in

Integrator Limited

PID Controller

PID Controller (2DOF)

Second-Order Integrator

Second-Order Integrator
Limited

State-Space

Transfer Fcn

Transport Delay

Variable Time Delay

Variable Transport
Delay

embedded systems. The code generated can contain dynamic
allocation and freeing of memory, recursion, additional memory
overhead, and widely-varying execution times. While the code

is functionally valid and generally acceptable in resource-rich
environments, smaller embedded targets often cannot support such
code.

In general, consider using the Simulink Model Discretizer to map
continuous blocks into discrete equivalents that support production
code generation. To start the Model Discretizer, select Analysis

> Control Design > Model Discretizer. One exception is the
Second-Order Integrator block because, for this block, the Model
Discretizer produces an approximate discretization.
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Block Support Notes

Zero-Pole

Discontinuities

Block Support Notes

Backlash Supports code generation.

Coulomb and Viscous
Friction

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Dead Zone

Supports code generation.

Dead Zone Dynamic

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Hit Crossing

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Quantizer

Supports code generation.

Rate Limiter

Cannot use inside a triggered subsystem hierarchy.

Rate Limiter Dynamic

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

1-10




Supported Products and Block Usage

Block Support Notes
Relay Support code generation.
Saturation

Saturation Dynamic

Wrap To Zero

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Discrete

Block Support Notes

Delay Supports code generation.

Difference + The Simulink Coder software does not explicitly group primitive

blocks that constitute a nonatomic masked subsystem block

in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

*  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Discrete Derivative

*  Generated code might rely on memcpy or memset (string.h).

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

Discrete Filter

Discrete FIR Filter

Support code generation.

PID Controller

PID Controller (2DOF)

*  Generated code might rely on memcpy or memset (string.h).
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Block

Support Notes

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

Discrete State-Space

Discrete Transfer Fcn

Discrete Zero-Pole

Generated code might rely on memcpy or memset (string.h).

Discrete-Time
Integrator

Depends on absolute time when used inside a triggered subsystem
hierarchy.

First-Order Hold

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Memory

Tapped Delay

Support code generation.

Transfer Fcn First
Order

Transfer Fcn Lead or
Lag

Transfer Fcn Real Zero

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Unit Delay

Generated code might rely on memcpy or memset (string.h).

Zero-Order Hold

Supports code generation.

Logic and Bit Operations

Block Support Notes
Bit Clear Support code generation.
Bit Set

Bitwise Operator
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Block

Support Notes

Combinatorial Logic

Compare to Constant

Compare to Zero

Detect Change

Detect Decrease

Detect Fall Negative

Detect Fall
Nonpositive

Detect Increase

Detect Rise
Nonnegative

Detect Rise Positive

Generated code might rely on memcpy or memset (string.h).

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

Support code generation.

Lookup Tables
Block Support Notes
Cosine The Simulink Coder software does not explicitly group primitive

blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit check box.

Direct Lookup Table
(n-D)

Interpolation Using
Prelookup

Support code generation.
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Block

Support Notes

1-D Lookup Table

2-D Lookup Table

n-D Lookup Table

Lookup Table Dynamic

Prelookup

Sine

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Math Operations

Block Support Notes
Abs Support code generation.
Add

Algebraic Constraint

Ignored during code generation.

Assignment

Bias

Complex to Magnitude-
Angle

Complex to Real-Imag

Divide

Dot Product

Find Nonzero Elements

Gain

Magnitude-Angle to
Complex

Math Function (10"u)

Math Function (conj)

1-14
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Block

Support Notes

Math Function (exp)

Math Function (hermitian)

Math Function (hypot)

Math Function (log)

Math Function (logl0)

Math Function
(magnitude”2)

Math Function (mod)

Math Function (pow)

Math Function (reciprocal)

Math Function (rem)

Math Function (square)

Math Function (transpose)

Matrix Concatenate

MinMax

MinMax Running
Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Reciprocal Sqrt

Reshape

Rounding Function

Sign

Signed Sqrt
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Block

Support Notes

Sine Wave Function

*  Does not refer to absolute time when configured for sample-
based operation. Depends on absolute time when in time-based
operation.

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

Slider Gain

Sqgrt

Squeeze

Subtract

Sum

Sum of Elements

Support code generation.

Trigonometric Function

Functions asinh, acosh, and atanh are not supported by all
compilers. If you use a compiler that does not support those
functions, the software issues a warning for the block and the
generated code fails to link.

Unary Minus

Vector Concatenate

Weighted Sample Time
Math

Support code generation.

Model Verification

Block

Support Notes

Assertion

Supports code generation.

Check Discrete
Gradient

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.
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Block Support Notes

Check Dynamic Gap Support code generation.

Check Dynamic Lower

Bound

Check Dynamic Range

Check Dynamic Upper

Bound

Check Input Resolution |Not recommended for production code. Relates to resource limits and

Check Static Gap restrictions on speed and memory often found in embedded systems.
- Generated code can contain dynamic allocation and freeing of

Check Static Lower memory, recursion, additional memory overhead, and widely-varying

Bound execution times. While the code is functionally valid and generally

Check Static Range acceptable in resource-rich environments, smaller embedded targets
- often cannot support such code. Usually, blocks evolve toward being

ggﬁﬁg Drzitde Lyeer suitable for production code. Thus, blocks suitable for production

code remain suitable.

Model-Wide Utilities

Block

Support Notes

Block Support Table

Ignored during code generation.

DocBlock

Uses the template symbol you specify for the Embedded Coder
Flag block parameter to add comments to generated code. Requires
an Embedded Coder license. For more information, see “Use a
Simulink DocBlock to Add a Comment”.

Model Info

Timed-Based
Linearization

Trigger-Based
Linearization

Ignored during code generation.

Ports & Subsystems

Block

Support Notes

Atomic Subsystem

CodeReuse Subsystem

Support code generation.
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Block

Support Notes

Configurable Subsystem

Enable

Enabled Subsystem

Enabled and Triggered
Subsystem

For Each

For Each Subsystem

For Ilterator Subsystem

Function-Call
Generator

Function-Call Split

Function-Call
Subsystem

(b

IT Action Subsystem

Model

Subsystem

Switch Case

Switch Case Action
Subsystem

Triggered Subsystem

While lterator
Subsystem

Signal Attributes

Block

Support Notes

Bus to Vector

Data Type Conversion

Data Type Conversion
Inherited

1-18
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Block

Support Notes

Data Type Duplicate

Data Type Propagation

Data Type Scaling
Strip

IC

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Probe

Supports code generation.

Rate Transition

*  Generated code might rely on memcpy or memset (string.h).

+ Cannot use inside a triggered subsystem hierarchy.

Signal Conversion

Signal Specification

Weighted Sample Time

Width

Support code generation.

Signal Routing

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Support code generation.

1-19



1 Modeling

Block

Support Notes

Environment Controller

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

From

Goto

Goto Tag Visibility

Index Vector

Support code generation.

Manual Switch

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Merge

When multiple signals connected to a Merge block have a non-Auto
storage class, all non-Auto signals connected to that block must be
identically labeled and have the same storage class. When Merge
blocks connect directly to one another, these rules apply to all
signals connected to Merge blocks in the group.

Multiport Switch

Mux

Selector

Support code generation.

Switch

Generated code might rely on memcpy or memset (string.h).

Sinks
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Block

Support Notes

Display

Floating Scope

Ignored for code generation.

Outport (Outl)

Supports code generation.

Scope

Ignored for code generation.

Stop Simulation

+  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

*  Generated code stops executing when the stop condition is true.

Terminator

Supports code generation.

To File

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

To Workspace

XY Graph

Ignored for code generation.

Sources

Block

Support Notes

Noise

Band-Limited White

Cannot use inside a triggered subsystem hierarchy.

Chirp Signal

Clock

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
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Block

Support Notes

memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Constant

Supports code generation.

Counter Free-Running

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Counter Limited

* The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block
in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

*  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Digital Clock
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Block

Support Notes

acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Enumerated Constant

Supports code generation.

From File

From Workspace

Ignored for code generation.

Ground

Inport (In1)

Support code generation.

Pulse Generator

Cannot use inside a triggered subsystem hierarchy. Does not refer to
absolute time when configured for sample-based operation. Depends
on absolute time when in time-based operation.

Ramp

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Random Number

Supports code generation.

Repeating Sequence

+  Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

+ Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.
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Block Support Notes
Repeating Sequence *  The Simulink Coder software does not explicitly group primitive
Interpolated blocks that constitute a nonatomic masked subsystem block

in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

+ Cannot use inside a triggered subsystem hierarchy.

Repeating Sequence
Stair

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Signal Builder

Signal Generator

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Sine Wave * Depends on absolute time when used inside a triggered
subsystem hierarchy.

+  Does not refer to absolute time when configured for sample-
based operation. Depends on absolute time when in time-based
operation.

Step Not recommended for production code. Relates to resource limits and

restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.
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Block Support Notes
Uniform Random Number |Supports code generation.

User-Defined

Block Support Notes

Fcn Supports code generation.

Interpreted MATLAB Consider using the MATLAB Function block instead.
Function

Level-2 MATLAB S- Ignored during code generation.

Function

MATLAB Function Supports code generation.

S-Function S-functions that call into MATLAB are not supported for code

S-Function Builder generation.

Simulink Block Data Type Support Table

The Simulink Block Data Type Support table summarizes characteristics of blocks in the
Simulink and Fixed-Point Designer block libraries, including whether or not they are
recommended for use in production code generation. To view this table, in the MATLAB
Command Window, type showblockdatatypetable, or consult the block reference
pages.

Block Set Support for Code Generation
Several products that include blocks are available for you to consider for code generation.

However, before using the blocks for one of these products, consult the documentation for
that product to confirm which blocks support code generation.
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Modeling Semantic Considerations
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In this section...

“Data Propagation” on page 1-26

“Sample Time Propagation” on page 1-28
“Latches for Subsystem Blocks” on page 1-29
“Block Execution Order” on page 1-29

“Algebraic Loops” on page 1-31

Data Propagation

The first stage of code generation is compilation of the block diagram. This stage is
analogous to that of a C or C++ program. The compiler carries out type checking and
preprocessing. Similarly, the Simulink engine verifies that input/output data types of
block ports are consistent, line widths between blocks are of expected thickness, and the
sample times of connecting blocks are consistent.

The Simulink engine propagates data from one block to the next along signal lines. The
data propagated consists of

+ Data type
*  Line widths

+  Sample times

You can verify what data types a Simulink block supports by typing
showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command above.

The Simulink engine typically derives signal attributes from a source block. For example,
the Inport block's parameters dialog box specifies the signal attributes for the block.
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E! Source Block Parameters: Inl x|

—Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, ‘Latch input by delaying outside signal
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs’ prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes.

Main Signal Attributes I
Minimum: Maxdmum:

I [0

Data type: I double LI = |

™ Lock output data type setting against changes by the fixed-point tools

Port dimensions (-1 for inherited):

|3

Variable-size signal: IInherit ;I

Sample time {-1 for inherited):

jo.o1
Signal type: Icomplex ;I
Sampling mode: Iaub: |

J- [0]4 I Cancel | Help

In this example, the Inport block has a port width of 3, a sample time of .01 seconds, the

data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the Inport

block through a simple block diagram.

double (S (30 5 double (2103

Q)
(111 .
Gain

St

In this example, the Gain and Outport blocks inherit the attributes specified for the

Inport block.
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Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can sometimes lead
to unexpected and unintended sample time assignments. Since a block may specify an
inherited sample time, information available at the outset is often insufficient to compile
a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample times to
those blocks that have inherited sample times but that have not yet been assigned a
sample time. Thus, the engine continues to fill in the blanks (the unknown sample times)
until sample times have been assigned to as many blocks as possible. Blocks that still do
not have a sample time are assigned a default sample time.

For a completely deterministic model (one where no sample times are set using the
above rules), you should explicitly specify the sample times of your source blocks. Source
blocks include root inport blocks and blocks without input ports. You do not have to set
subsystem input port sample times. You might want to do so, however, when creating
modular systems.

An unconnected input implicitly connects to ground. For ground blocks and ground
connections, the sample time is always constant (inf).

All blocks have an inherited sample time (T = -1). They are assigned a sample time of (T
- T})/50.

Blocks Whose Outputs Have Constant Values

When you display sample time colors, by default, Constant blocks appear magenta

in color to indicate that the block outputs have constant values during simulation.
Downstream blocks whose output values are also constant during simulation, such as
Gain blocks, similarly appear magenta if they use an inherited sample time. The code
generated for these blocks depends in part on the tunability of the block parameters.

If you set Configuration Parameters > Optimization > Signals and Parameters >
Default parameter behavior to Inlined, the block parameters are not tunable in the
generated code. Because the block outputs are constant, the code generator eliminates
the block code due to constant folding. If the code generator cannot fold the code, or

if you select settings to disable constant folding, the block code appears in the model
initialization function. The generated code is more efficient because it does not compute
the outputs of these blocks during execution.
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However, if you configure a block or model so that the block parameters appear in
the generated code as tunable variables, the code generator represents the blocks in a
different way. Block parameters are tunable if, for example:

* You set Default parameter behavior to Tunable. By default, numeric block
parameters appear as tunable fields of a global parameter structure.

* You use a tunable parameter, such as a Simul ink.Parameter object that uses a
storage class other than Auto, as the value of one or more numeric block parameters.
These block parameters are tunable regardless of the setting that you choose for
Default parameter behavior.

If a block parameter is tunable, the generated code must compute the block outputs
during execution. Therefore, the block code appears in the model step function. If the
model uses multiple discrete rates, the block code appears in the output function for the
fastest downstream rate that uses the block outputs.

Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call subsystem, you
can use latch options to preserve input values while the subsystem executes. The Inport
block latch options include:

For Use

Triggered subsystems Latch input by delaying outside signal

Function-call Latch input for feedback signals of function-call
subsystems subsystem outputs

When you use Latch input for feedback signals of function-call subsystem
outputs for a function-call subsystem, the Simulink Coder code generator

* Preserves latches in generated code regardless of optimizations that might be set

+ Places the code for latches at the start of a subsystem's output/update function

For more information on these options, see the description of the Inport block in the
Simulink documentation.

Block Execution Order

Once the Simulink engine compiles the block diagram, it creates a model . rtw file
(analogous to an object file generated from a C or C++ file). The model . rtw file contains
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the connection information of the model, as well as the signal attributes. Thus, the
timing engine in can determine when blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in handwritten code)
in a model. For example, in the next figure the disconnected_trigger model on the
left has its trigger port connected to ground, which can lead to the blocks inheriting a
constant sample time. Calling the trigger function, (), directly from user code does not
work. Instead, you should use a function-call generator to specify the rate at which F()
should be executed, as shown in the connected_trigger model on the right.

In1

3 fO
Y o - Connected
: Disconnected Function-call Trigger
: Trigger Generator
v v
fo f0
CDO—>{in1  outt——CD CDO—>|in1  outt——CD
Out1 In1 Out1
Triggered Triggered
Subsystem Subsystem
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Instead of the function-call generator, you could use another block that can drive the
trigger port. Then, you should call the model's main entry point to execute the trigger
function.

For multirate models, a common use of the Simulink Coder product is to build individual
models separately and then manually code the I/0 between the models. This approach
places the burden of data consistency between models on the developer of the models.
Another approach is to let the Simulink and Simulink Coder products maintain data
consistency between rates and generate multirate code for use in a multitasking
environment. The Simulink Rate Transition block is able to interface both periodic

and asynchronous signals. For a description of the Simulink Coder libraries, see
“Asynchronous Events” on page 4-2. For more information on multirate code

generation, see “Modeling for Multitasking Execution” on page 3-11.
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Algebraic Loops

Algebraic loops are circular dependencies between variables. This prevents the
straightforward direct computation of their values. For example, in the case of a system
of equations

c X=y +2

. y = =X

the values of X and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for X and y (in an intelligent
manner, for example, using gradient based search) or “solve” the system of equations. In
the previous example, solving the system into an explicit form leads to

c 2X = 2
-y = -x
- x=1
-y =-1

An algebraic loop exists whenever the output of a block having direct feedthrough (such
as Gain, Sum, Product, and Transfer Fcn) is fed back as an input to the same block. The
Simulink engine is often able to solve models that contain algebraic loops, such as the
next diagram.

"\
Sine \Wave
. : — (D
o ot 1
Constant g

The Simulink Coder software does not produce code that solves algebraic loops. This
restriction includes models that use Algebraic Constraint blocks in feedback paths.
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However, the Simulink engine can often eliminate algebraic loops that arise, by grouping
equations in certain ways in models that contain them. It does this by separating the
update and output functions to avoid circular dependencies. See “Algebraic Loops” in the
Simulink documentation for details.

Algebraic Loops in Triggered Subsystems

While the Simulink engine can minimize algebraic loops involving atomic and enabled
subsystems, a special consideration applies to some triggered subsystems. An example
for which code can be generated is shown in the following model and triggered
subsystem.

i (=
|
Pulse
Generator Scope
r
F
1 —w Ini Owrt1 e 1 ]
L Ot
Constant Triggered
Subsystem

The default Simulink behavior is to combine output and update methods for the
subsystem, which creates an apparent algebraic loop, even though the Unit Delay block
in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the output and
update methods of triggered and enabled-triggered subsystems when feasible. If you
want the Simulink Coder code generator to take advantage of this feature, select the
Minimize algebraic loop occurrences check box in the Subsystem Parameters dialog
box. Select this option to avoid algebraic loop warnings in triggered subsystems involved
in loops.

Note: If you check this box, the generated code for the subsystem might contain split
output and update methods, even if the subsystem is not actually involved in a loop. Also,
if a direct feedthrough block (such as a Gain block) is connected to the inport in the above
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triggered subsystem, the Simulink engine cannot solve the problem, and the Simulink
Coder software is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on the Model
Referencing pane of the Configuration Parameters dialog box. Selecting it enables the

Simulink Coder software to generate code for models containing Model blocks that are
involved in algebraic loops.
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+  “Absolute and Elapsed Time Computation” on page 2-2
* “Access Timers Programmatically” on page 2-5
+ “Generate Code for an Elapsed Time Counter” on page 2-9

* “Absolute Time Limitations” on page 2-12
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Absolute and Elapsed Time Computation

In this section...

“About Timers” on page 2-2
“Timers for Periodic and Asynchronous Tasks” on page 2-3
“Allocation of Timers” on page 2-3

“Integer Timers in Generated Code” on page 2-3

“Elapsed Time Counters in Triggered Subsystems” on page 2-4

About Timers

Certain blocks require the value of either absolute time (that is, the time from the start
of program execution to the present time) or elapsed time (for example, the time elapsed
between two trigger events). Targets that support the real-time model (rtModel) data
structure provide efficient time computation services to blocks that request absolute or
elapsed time. Absolute and elapsed timer features include

* Timers are implemented as unsigned integers in generated code.

* In multirate models, at most one timer is allocated per rate. If no blocks executing
at a given rate require a timer, a timer is not allocated to that rate. This minimizes
memory allocated for timers and significantly reduces overhead involved in
maintaining timers.

+ Allocation of elapsed time counters for use of blocks within triggered subsystems is
minimized, further reducing memory usage and overhead.

*  The Simulink Coder product provides S-function and TLC APIs that let your S-
functions access timers, in both simulation and code generation.

*  The word size of the timers is determined by a user-specified maximum counter value,
Application lifespan (days). If you specify this value, timers will not overflow.
For more information, see “Control Memory Allocation for Time Counters” on page
31-10.

See “Absolute Time Limitations” on page 2-12 for more information about absolute
time and the restrictions that it imposes.
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Timers for Periodic and Asynchronous Tasks

This chapter discusses timing services provided for blocks executing within periodic tasks
(that is, tasks running at the model's base rate or subrates).

The Simulink Coder product also provides timer support for blocks whose execution is
asynchronous with respect to the periodic timing source of the model. See the following
topics:

* “Use Timers in Asynchronous Tasks” on page 4-24

+ “Create a Customized Asynchronous Library” on page 4-26

Allocation of Timers

If you create or maintain an S-Function block that requires absolute or elapsed time
data, it must register the requirement (see “Access Timers Programmatically” on page
2-5). In multirate models, timers are allocated on a per-rate basis. For example,
consider a model structured as follows:

* There are three rates, A, B, and C, in the model.
*  No blocks running at rate B require absolute or elapsed time.

* Two blocks running at rate C register a requirement for absolute time.

* One block running at rate A registers a requirement for absolute time.

In this case, two timers are generated, running at rates A and C respectively. The timing
engine updates the timers as the tasks associated with rates A and C execute. Blocks
executing at rates A and C obtain time data from the timers associated with rates A and

C.

Integer Timers in Generated Code

In the generated code, timers for absolute and elapsed time are implemented as unsigned
integers. The default size is 64 bits. This is the amount of memory allocated for a timer

if you specify a value of inf for the Application lifespan (days) parameter. For an
application with a sample rate of 1000 MHz, a 64-bit counter will not overflow for more
than 500 years. See “Use Timers in Asynchronous Tasks” on page 4-24 and “Control
Memory Allocation for Time Counters” on page 31-10 for more information.
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Elapsed Time Counters in Triggered Subsystems

Some blocks, such as the Discrete-Time Integrator block, perform computations requiring
the elapsed time (delta T) since the previous block execution. Blocks requiring elapsed
time data must register the requirement (see “Access Timers Programmatically” on page
2-5). A triggered subsystem then allocates and maintains a single elapsed time

counter if required. This timer functions at the subsystem level, not at the individual
block level. The timer is generated if the triggered subsystem (or a unconditionally
executed subsystem within the triggered subsystem) contains one or more blocks
requiring elapsed time data.

Note: If you are using simplified initialization mode, elapsed time is reset on first
execution after becoming enabled, whether or not the subsystem is configured to reset
on enable. For more information, see “Underspecified initialization detection” in the
Simulink documentation.
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Access Timers Programmatically

In this section...

“About Timer APIs” on page 2-5

“C API for S-Functions” on page 2-5

“TLC API for Code Generation” on page 2-7

About Timer APIs

This topic describes APIs that let your S-functions take advantage of the efficiencies
offered by absolute and elapsed timers. SimStruct macros are provided for use in
simulation, and TLC functions are provided for inlined code generation. Note that

* To generate and use the new timers as described above, your S-
functions must register the need to use an absolute or elapsed timer
by calling ssSetNeedAbsoluteTime or ssSetNeedElapseTime in
mdlInitializeSampleTime.

+  Existing S-functions that read absolute time but do not register by using these macros
continue to operate as expected, but generate less efficient code.

C API for S-Functions

The SimStruct macros described in this topic provide access to absolute and elapsed
timers for S-functions during simulation.

In the functions below, the SImStruct *S argument is a pointer to the simstruct of
the calling S-function.

* void ssSetNeedAbsoluteTime(SimStruct *S, boolean b):if b is TRUE,
registers that the calling S-function requires absolute time data, and allocates an
absolute time counter for the rate at which the S-function executes (if such a counter
has not already been allocated).

+ int ssGetNeedAbsoluteTime(SimStruct *S): returns 1 if the S-function has
registered that it requires absolute time.

+ double ssGetTaskTime(SimStruct *S, tid): read absolute time for a given
task with task identifier tid. ssGetTaskTime operates transparently, regardless of
whether or not you use the new timer features. ssGetTaskTime is documented in the
SimStruct Functions chapter of the Simulink documentation.
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+ void ssSetNeedElapseTime(SimStruct *S, boolean b):if bis TRUE,
registers that the calling S-function requires elapsed time data, and allocates an
elapsed time counter for the triggered subsystem in which the S-function executes (if
such a counter has not already been allocated). See also “Elapsed Time Counters in
Triggered Subsystems” on page 2-4.

* int ssGetNeedElapseTime(SimStruct *S): returns 1 if the S-function has
registered that it requires elapsed time.

+ void ssGetElapseTime(SimStruct *S, (double *)elapseTime): returns, to
the location pointed to by elapseTime, the value (as a double) of the elapsed time
counter associated with the S-function.

+ void ssGetElapseTimeCounterDtype(SimStruct *S, (int *)dtype):
returns the data type of the elapsed time counter associated with the S-function
to the location pointed to by dtype. This function is intended for use with the
ssGetElapseTimeCounter function (see below).

* void ssGetElapseResolution(SimStruct *S, (double *)resolution):
returns the resolution (that is, the sample time) of the elapsed time counter
associated with the S-function to the location pointed to by resolution. This
function is intended for use with the ssGetElapseTimeCounter function (see
below).

+ void ssGetElapseTimeCounter(SimStruct *S, (void *)elapseTime): This
function is provided for the use of blocks that require the elapsed time values for
fixed-point computations. ssGetElapseTimeCounter returns, to the location pointed
to by elapseTime, the integer value of the elapsed time counter associated with the
S-function. If the counter size is 64 bits, the value is returned as an array of two 32-
bit words, with the low-order word stored at the lower address.

To determine how to access the returned counter value, obtain the data type of the
counter by calling ssGetElapseTimeCounterDtype, as in the following code:

int *y_dtype;
ssGetElapseTimeCounterDtype(S, y_dtype);

switch(*y_dtype) {
case SS_DOUBLE_UINT32:

{
uint32_T dataPtr[2];
ssGetElapseTimeCounter (S, dataPtr);
}
break;

case SS_UINT32:
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{
uint32_T dataPtr[1];

ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINT16:
{
uintl6_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINTS:
{
uint8 T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_DOUBLE:
{
real_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
default:
ssSetErrorStatus(S, "Invalid data type for elaspe time
counter™);
break;

}

If you want to use the actual elapsed time, issue a call to the ssGetElapseTime
function to access the elapsed time directly. You do not need to get the counter value
and then calculate the elapsed time.

double *y_elapseTime;

ssGetElapseTime(S, elapseTime)

TLC API for Code Generation

The following TLC functions support elapsed time counters in generated code when you
inline S-functions by writing TLC scripts for them.
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LibGetTaskTimeFromTID(block): Generates code to read the absolute time for the
task in which block executes.

LibGetTaskTimeFromTID is documented with other sample time functions in
the TLC Function Library Reference pages of the Target Language Compiler
documentation.

Note Do not use LibGetT for this purpose. LibGetT always reads the base rate (tid
0) timer. If LibGetT is called for a block executing at a subrate, the wrong timer is
read, causing serious errors.

LibGetElapseTime(system): Generates code to read the elapsed time counter for
systenm. (system is the parent system of the calling block.) See “Generate Code for
an Elapsed Time Counter” on page 2-9 for an example of code generated by this
function.

LibGetElapseTimeCounter(system): Generates code to read the integer

value of the elapsed time counter for system. (system is the parent system

of the calling block.) This function should be used in conjunction with
LibGetElapseTimeCounterDtypeld and LibGetElapseTimeResolution. (See
the discussion of ssGetElapseTimeCounter above.)

LibGetElapseTimeCounterDtypeld(system): Generates code that returns the
data type of the elapsed time counter for system. (system is the parent system of the
calling block.)

LibGetElapseTimeResolution(system): Generates code that returns the
resolution of the elapsed time counter for system. (system is the parent system of
the calling block.)
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Generate Code for an Elapsed Time Counter

This example shows a model illustrating how an elapsed time counter is generated

and used by a Discrete-Time Integrator block within a triggered subsystem. The
following block diagrams show the model elapseTime_exp, which contains subsystem
Amplifier, which includes a Discrete-Time Integrator block.

i
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Generator
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Constant

Amplifier

elapseTime_exp Model

Trigger

K Ts
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Dis orete-Time
Integrator

Amplifier Subsystem

A 32-bit timer for the base rate (the only rate in this model) is defined within the
rtModel structure, as follows, in model .h.

iy
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
time_T stepSize;
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uint32_T clockTickO;
uint32_T clockTickHO;
time_T stepSizeO;
time_T tStart;
time_T tFinal;
time_T timeOfLastOutput;
void *timingData;
real_T *varNextHitTimesList;
SimTimeStep simTimeStep;
boolean_T stopRequestedFlag;
time_T *sampleTimes;
time_T *offsetTimes;
int_T *sampleTimeTaskIDPtr;
int_T *sampleHits;
int_T *perTaskSampleHits;
time_T *t;
time_T sampleTimesArray[1];
time_T offsetTimesArray[1];
int_T sampleTimeTasklDArray[1];
int_T sampleHitArray[1];
int_T perTaskSampleHitsArray[1];
time_T tArray[1];

} Timing;

Had the target been ERT instead of GRT, the Timing structure would have been pruned
to contain only the data required by the model, as follows:

/* Real-time Model Data Structure */ (for ERTI)
struct _RT_MODEL_elapseTime_exp_Tag {

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickO;
} Timing;
}:

Storage for the previous-time value of the Amplifier subsystem (Amplifier_PREV_T)
is allocated in the D_Work(states) structure in model .h.

typedef struct D_Work_elapseTime_exp_tag {
real_T DiscreteTimelntegrator_DSTATE; /* "<S1>/Discrete-Time
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Integrator® */
int32_T clockTickCounter; /* "<Root>/Pulse Generator" */
uint32_T Amplifier_PREV_T; /* "<Root>/Amplifier® */

} D_Work_elapseTime_exp;

These structures are declared in model .c:

/* Block states (auto storage) */
D_Work_elapseTime_exp elapseTime_exp_DWork;

/* Real-time model */
rtModel_elapseTime_exp elapseTime_exp_M_;
rtModel_elapseTime_exp *elapseTime_exp_M = &elapseTime_exp_M_;

The elapsed time computation is performed as follows within the model_step function:

/* Output and update for trigger system: "<Root>/Amplifier® */
uint32_T rt_currentTime =
(uint32_T)elapseTime_exp_M->Timing.clockTickO);
uint32_T rt_elapseTime = rt_currentTime -
elapseTime_exp_DWork.Amplifier_PREV_T;
elapseTime_exp_DWork.Amplifier_PREV_T = rt_currentTime;

As shown above, the elapsed time is maintained as a state of the triggered subsystem.
The Discrete-Time Integrator block finally performs its output and update computations
using the elapsed time.

/* Discretelntegrator: "<S1>/Discrete-Time Integrator® */
OUTPUT = elapseTime_exp_DWork.DiscreteTimelntegrator_DSTATE;

/* Update for Discretelntegrator: "<Sl1>/Discrete-Time Integrator®*/
elapseTime_exp_DWork.DiscreteTimelntegrator DSTATE += 0.3 *
(real_T)rt_elapseTime * 1.5 ;

Because the triggered subsystem maintains the elapsed time, the TLC implementation
of the Discrete-Time Integrator block needs only a single call to LibGetElapseTime to
access the elapsed time value.
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Absolute time is the time that has elapsed from the beginning of program execution to
the present time, as distinct from elapsed time, the interval between two events. See
“Absolute and Elapsed Time Computation” on page 2-2 for more information.

When you design an application that is intended to run indefinitely, you must take care
when logging time values, or using charts or blocks that depend on absolute time. If the
value of time reaches the largest value that can be represented by the data type used
by the timer to store time, the timer overflows and the logged time or block output is
incorrect.

If your target uses rtModel, you can avoid timer overflow by specifying a value for the
Application life span parameter. See “Integer Timers in Generated Code” on page 2-3
for more information.

The following limitations apply to absolute time:

+ If you log time values by opening the Configuration Parameters dialog box and
enabling Data Import/Export > Save to workspace > Time, your model uses
absolute time.

+  Every Stateflow chart that uses time is dependent on absolute time. The only way to
eliminate the dependency is to change the Stateflow chart to not use time.

* The following Simulink blocks depend on absolute time:

+ Backlash

+ Chirp Signal

+ Clock
Derivative
Digital Clock
Discrete-Time Integrator (only when used in triggered subsystems)
From File
From Workspace

* Pulse Generator

* Ramp

+ Rate Limiter
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* Repeating Sequence
+ Signal Generator
Sine Wave (only when the Sine type parameter is set to Time-based)
+ Step
+ To File
To Workspace (only when logging to StructureWithTime format)
Transport Delay
+ Variable Time Delay
+ Variable Transport Delay

In addition to the Simulink blocks above, blocks in other blocksets may depend on
absolute time. See the documentation for the blocksets that you use.
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Time-Based Scheduling and Code Generation

3-2

In this section...

“Sample Time Considerations” on page 3-2

“Tasking Modes” on page 3-2

“Model Execution and Rate Transitions” on page 3-4
“Execution During Simulink Model Simulation” on page 3-5

“Model Execution in Real Time” on page 3-5

“Single-Tasking Versus Multitasking Operation” on page 3-6

Sample Time Considerations

Simulink models run at one or more sample times. The Simulink product provides
considerable flexibility in building multirate systems, that is, systems with more than
one sample time. However, this same flexibility also allows you to construct models for
which the code generator cannot generate real-time code for execution in a multitasking
environment. To make multirate models operate as expected in real time (that is, to give
the right answers), you sometimes must modify your model or instruct the Simulink
engine to modify the model for you. In general, the modifications involve placing Rate
Transition blocks between blocks that have unequal sample times. The following sections
discuss issues you must address to use a multirate model in a multitasking environment.
For a comprehensive discussion of sample times, including rate transitions, see “What

Is Sample Time?”, “Sample Times in Subsystems”, “Sample Times in Systems”, “Resolve
Rate Transitions”, and associated topics.

Tasking Modes

There are two execution modes for a fixed-step Simulink model: single-tasking and
multitasking. These modes are available only for fixed-step solvers. To select an
execution mode, use the Tasking mode for periodic sample times menu on the
Solver pane of the Configuration Parameters dialog box. Auto mode (the default) applies
multitasking execution for a multirate model, and otherwise selects single-tasking
execution. You can also select SingleTasking or MultiTasking execution explicitly.

Note: A model that is multirate and uses multitasking cannot reference a multirate
model that uses single-tasking.
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Execution of models in a real-time system can be done with the aid of a real-time
operating system, or it can be done on a bare-board target, where the model runs in the
context of an interrupt service routine (ISR).

The fact that a system (such as The Open Group UNIX" or Microsoft® Windows systems)
is multitasking does not imply that your program can execute in real time. This is
because the program might not preempt other processes when required.

In operating systems (such as PC-DOS) where only one process can exist at a given time,
an interrupt service routine (ISR) must perform the steps of saving the processor context,
executing the model code, collecting data, and restoring the processor context.

Other operating systems, such as POSIX-compliant ones, provide automatic context
switching and task scheduling. This simplifies the operations performed by the ISR. In
this case, the ISR simply enables the model execution task, which is normally blocked.
The next figure illustrates this difference.
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Model Execution and Rate Transitions

To generate code that executes as expected in real time, you (or the Simulink engine)
might need to identify and handle sample rate transitions within the model. In
multitasking mode, by default the Simulink engine flags errors during simulation if
the model contains invalid rate transitions, although you can use the Multitask rate
transition diagnostic to alter this behavior. A similar diagnostic, called Single task

Model Execution
Task

semTake

¥

Execute Model

v

Collect Data

rate transition, exists for single-tasking mode.
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To avoid raising rate transition errors, insert Rate Transition blocks between tasks. You
can request that the Simulink engine handle rate transitions automatically by inserting
hidden Rate Transition blocks. See “Automatic Rate Transition” on page 3-25 for an
explanation of this option.

To understand such problems, first consider how Simulink simulations differ from real-
time programs.

Execution During Simulink Model Simulation

Before the Simulink engine simulates a model, it orders the blocks based upon their
topological dependencies. This includes expanding virtual subsystems into the individual
blocks they contain and flattening the entire model into a single list. Once this step is
complete, each block is executed in order.

The key to this process is the ordering of blocks. A block whose output is directly
dependent on its input (that is, a block with direct feedthrough) cannot execute until the
block driving its input executes.

Some blocks set their outputs based on values acquired in a previous time step or from
initial conditions specified as a block parameter. The output of such a block is determined
by a value stored in memory, which can be updated independently of its input. During
simulation, computations are performed prior to advancing the variable corresponding to
time. This results in computations occurring instantaneously (that is, no computational
delay).

Model Execution in Real Time

A real-time program differs from a Simulink simulation in that the program must
execute the model code synchronously with real time. Every calculation results in some
computational delay. This means the sample intervals cannot be shortened or lengthened
(as they can be in a Simulink simulation), which leads to less efficient execution.

Consider the following timing figure.
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Time ———»

Note the processing inefficiency in the sample interval t1. That interval cannot be
compressed to increase execution speed because, by definition, sample times are clocked
in real time.

You can circumvent this potential inefficiency by using the multitasking mode. The
multitasking mode defines tasks with different priorities to execute parts of the model
code that have different sample rates.

See “Multitasking and Pseudomultitasking Modes” on page 3-11 for a description of
how this works. It is important to understand that section before proceeding here.

Single-Tasking Versus Multitasking Operation

Single-tasking programs require longer sample intervals, because all computations must
be executed within each clock period. This can result in inefficient use of available CPU
time, as shown in the previous figure.

Multitasking mode can improve the efficiency of your program if the model is large and
has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks execute

at a slower rate, multitasking can actually degrade performance. In such a model, the
overhead incurred in task switching can be greater than the time required to execute the
slower blocks. In this case, it is more efficient to execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you might need to
modify your model by adding Rate Transition blocks (or instruct the Simulink engine to
do so) to generate expected results.

For more information about the two modes of execution and examples, see “Modeling for
Single-Tasking Execution” on page 3-7 and “Modeling for Multitasking Execution”
on page 3-11.



Modeling for Single-Tasking Execution

Modeling for Single-Tasking Execution

In this section...

“Single-Tasking Mode” on page 3-7

“Build a Program for Single-Tasking Execution” on page 3-7

“Single-Tasking Execution” on page 3-8

Single-Tasking Mode

You can execute model code in a strictly single-tasking manner. While this mode is less
efficient with regard to execution speed, in certain situations, it can simplify your model.

In single-tasking mode, the base sample rate must define a time interval that is long
enough to allow the execution of all blocks within that interval.

The next figure illustrates the inefficiency inherent in single-tasking execution.

t0 t1 t2 t3 t4

A 7 N 7 N 7 N 7 N

Single-tasking system execution requires a base sample rate that is long enough to
execute one step through the entire model.

Build a Program for Single-Tasking Execution

To use single-tasking execution, select SingleTasking from the Tasking mode for
periodic sample times menu on the Solver pane of the Configuration Parameters
dialog box. If you select Auto, single-tasking is used in the following cases:

+ If your model contains one sample time

+ If your model contains a continuous and a discrete sample time and the fixed step size
is equal to the discrete sample time
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Single-Tasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers the operation of both SingleTasking
and MultiTasking Solver pane tasking modes.

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has been
forced into the order shown by assigning higher priorities to blocks F, E, and D. The
ordering shown is one possible valid execution ordering for this model. (See “Simulation
Phases in Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks. In a real-

time system, the execution order determines the order in which blocks execute within

a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.

OH 04 aa p—y
|n|:3 J = | [ | 'ZD“ | oETs .| yin=Cxinp+Du(n) :
T "= gl y— i frm i R | xine1j=axinBuin) —'
- I @ — Out1
Sine Wave 8 Diserete Fitter R ETD i E . F
SampleTime=p.1 o Tramsition SampleTime=1 i Ee  DsosteTime Discrete State-Space
i (Fastto Slow) {Slow o Fast) Integrator SampleTime=0 1
SampleTime=0,1

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.

This example considers the execution of the above model when the solver Tasking mode
is SingleTasking.

In a single-tasking system, if the Block reduction option on the Optimization pane is
on, fast-to-slow Rate Transition blocks are optimized out of the model. The default case is
shown (Block reduction on), so block B does not appear in the timing diagrams in this
section. For more information, see “Block reduction”.
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The following table shows, for each block in the model, the execution order, sample time,
and whether the block has an output or update computation. Block A does not have
discrete states, and accordingly does not have an update computation.

Execution Order and Sample Times (Single-Tasking)

Blocks Sample Time Output Update
(in Execution Order) |(in Seconds)

E 0.1 Y Y

F 0.1 Y Y

D 1 Y Y

A 0.1 Y N

C 1 Y Y

Real-Time Single-Tasking Execution

The next figure shows the scheduling of computations when the generated code is
deployed in a real-time system. The generated program is shown running in real time,
under control of interrupts from a 10 Hz timer.

EL] [wuaif)
Update: [EFDC | | [EF] | EFC

Time: 0.0 0.1 oz 1.0

At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks execute their
output computations; this is followed by update computations for blocks that have states.
Within a given time interval, output and update computations are sequenced in block
execution order.

The fast blocks execute on every tick, at intervals of 0.1 second. Output computations are
followed by update computations.
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The system spends some portion of each time interval (labeled “wait”) idling. During
the intervals when only the fast blocks execute, a larger portion of the interval is spent
idling. This illustrates an inherent inefficiency of single-tasking mode.

Simulated Single-Tasking Execution

The next figure shows the execution of the model during the Simulink simulation loop.

b

Update: Er [ER [EA - [EFm Ty
| | y

Time: 0.0 0.1 0z 10

-

Because time is simulated, the placement of ticks represents the iterations of the
simulation loop. Blocks execute in exactly the same order as in the previous figure,
but without the constraint of a real-time clock. Therefore there is no idle time between
simulated sample periods.
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Modeling for Multitasking Execution

In this section...

“Multitasking and Pseudomultitasking Modes” on page 3-11
“Build a Program for Multitasking Execution” on page 3-13
“Execute Multitasking Models” on page 3-13

“Multitasking Execution” on page 3-15

Multitasking and Pseudomultitasking Modes

When periodic tasks execute in a multitasking mode, by default the blocks with the
fastest sample rates are executed by the task with the highest priority, the next fastest
blocks are executed by a task with the next higher priority, and so on. Time available in
between the processing of high-priority tasks is used for processing lower priority tasks.
This results in efficient program execution.

Where tasks are asynchronous rather than periodic, there may not necessarily be

a relationship between sample rates and task priorities; the task with the highest
priority need not have the fastest sample rate. You specify asynchronous task priorities
using Async Interrupt and Task Sync blocks. You can switch the sense of what priority
numbers mean by selecting or deselecting the Solver option Higher priority value
indicates higher task priority.

In multitasking environments (that is, under a real-time operating system), you can
define separate tasks and assign them priorities. In a bare-board target (that is, no real-
time operating system present), you cannot create separate tasks. However, Simulink
Coder application modules implement what is effectively a multitasking execution
scheme using overlapped interrupts, accompanied by programmatic context switching.

This means an interrupt can occur while another interrupt is currently in progress.
When this happens, the current interrupt is preempted, the floating-point unit (FPU)
context is saved, and the higher priority interrupt executes its higher priority (that is,
faster sample rate) code. Once complete, control is returned to the preempted ISR.

The next figures illustrate how timing of tasks in multirate systems are handled by

the Simulink Coder software in multitasking, pseudomultitasking, and single-tasking
environments.
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’(‘(3 t1 t2 t3 t4
Highestfriority | I T T rate 1
l T l T l T l T l rate 2
W/ IW/! [
A l T l T rate 3
Lowest Priority &\\\\\\\\\\\\\\\\\ T
T Vertical arrows indicate sample time hits.
Dotted lines with downward pointing Dark gray areas indicate task execution.

@ arrows indicate the release of control
+ to alower priority task.

] Hashed areas indicate task preemption
N by a higher priority task.

Light gray areas indicate task execution
is pending.

. Dotted lines with upward pointing
t arrows indicate preemption by a
. higher priority task.

The next figure shows how overlapped interrupts are used to implement
pseudomultitasking. In this case, Interrupt O does not return until after Interrupts 1, 2,
and 3.
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Build a Program for Multitasking Execution

To use multitasking execution, select Auto (the default) or MultiTasking from

the Tasking mode for periodic sample times menu on the Solver pane of the
Configuration Parameters dialog box. This menu is active only if you select Fixed-step
as the solver type. Auto mode results in a multitasking environment if your model has
two or more different sample times. A model with a continuous and a discrete sample
time runs in single-tasking mode if the fixed-step size is equal to the discrete sample
time.

Execute Multitasking Models

In cases where the continuous part of a model executes at a rate that is different from
the discrete part, or a model has blocks with different sample rates, the Simulink
engine assigns each block a task identifier (tid) to associate the block with the task that
executes at the block's sample rate.
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You set sample rates and their constraints on the Solver pane of the Configuration
Parameters dialog box. To generate code with the Simulink Coder software, you must

select Fixed-step for the solver type. Certain restrictions apply to the sample rates that
you can use:

* The sample rate of a block must be an integer multiple of the base (that is, the fastest)
sample period.

* When Periodic sample time constraint is unconstrained, the base sample
period is determined by the Fixed step size specified on the Solvers pane of the
Configuration parameters dialog box.

* When Periodic sample time constraint is Specified, the base rate fixed-
step size is the first element of the sample time matrix that you specify in the
companion option Sample time properties. The Solver pane from the example
model rtwdemo_mrmtbb shows an example.

— Simulation time

Start ime: |0.0 Stop time: | 10.0

—Solver options

Type: IFixeu:I-step ;I Solver: IDisu:retE (no continuous states) ;I

Fixed-step size (fundamental sample time): Iautu:u

—Tasking and sample time options

Perindic sample time constraint: ISpEn:iﬁed ;I
Sample time properties: I [[1,0,00;[2,0,1];]
Tasking mode for periodic sample times: IMuIt‘I’askjng ;I

[T automatically handle rate transition for data transfer

[T Higher priority value indicates higher task priority

+  Continuous blocks execute by using an integration algorithm that runs at the base
sample rate. The base sample period is the greatest common denominator of all rates
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in the model only when Periodic sample time constraint is set to Unconstrained
and Fixed step size is Auto.

* The continuous and discrete parts of the model can execute at different rates only if
the discrete part is executed at the same or a slower rate than the continuous part
and is an integer multiple of the base sample rate.

Multitasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers the operation of both SingleTasking
and MultiTasking Solver pane tasking modes.

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has been
forced into the order shown by assigning higher priorities to blocks F, E, and D. The
ordering shown is one possible valid execution ordering for this model. (See “Simulation
Phases in Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks. In a real-

time system, the execution order determines the order in which blocks execute within

a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.

OH

IF3

|n.| = — . 1 0 |:|:: KTs yin}=Cain}+Du(n) .
- » . »| > Vs L] Vi
Lr i o | ot i P - g e G
. M [m = D Out1
- B = D = F

Sine Wave . Discrete Fitter iti .
SampleTime=0.1 Rate Transition Sample Time=1 Fr{“E Transition Dis crete-Time Diorete State-Space

me ) (Fast to Slow) (Slow & Fast) Integrator Sample Time=0.1

SampleTime=D 1

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.
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This example considers the execution of the above model when the solver Tasking mode
is MultiTasking. Block computations are executed under two tasks, prioritized by rate:

* The slower task, which gets the lower priority, is scheduled to run every second. This
is called the I second task.

* The faster task, which gets higher priority, is scheduled to run 10 times per second.
This 1s called the 0.1 second task. The 0.1 second task can preempt the 1 second task.

The following table shows, for each block in the model, the execution order, the task
under which the block runs, and whether the block has an output or update computation.
Blocks A and B do not have discrete states, and accordingly do not have an update
computation.

Task Allocation of Blocks in Multitasking Execution

Blocks Task Output Update
(in Execution Order)

E 0.1 second task Y Y

F 0.1 second task Y Y

D The Rate Transition block uses port- Y Y

based sample times.

Output runs at the output port sample
time under 0.1 second task.

Update runs at input port sample time
under 1 second task.

For more information on port-based
sample times, see “Inherit Sample
Times” in the Simulink documentation.

A 0.1 second task Y N

B The Rate Transition block uses port- Y N
based sample times.

Output runs at the output port sample
time under 0.1 second task.

For more information on port-based
sample times, see “Inherit Sample
Times” in the Simulink documentation.

C 1 second task Y Y
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Real-Time Multitasking Execution

The next figure shows the scheduling of computations in MultiTasking solver mode
when the generated code is deployed in a real-time system. The generated program is
shown running in real time, as two tasks under control of interrupts from a 10 Hz timer.

1 SECOND
Output [ch— —
3 - .
5 J 2
=] =]
= =
. 2 a
Updata: g @_I .:gr
1
| -
Tima: 0.0 1.0
0.1 SECOND ]
Output: [EFDAE] EFA] EFDARB
J J w [walil J J
oo 9 =
i | | 1 |
| | ] I ] I *
Tima: 00 (iR | 0.2 1.0 1.1

Simulated Multitasking Execution
The next figure shows the Simulink execution of the same model, in MultiTasking

solver mode. In this case, the Simulink engine runs the blocks in one thread of execution,
simulating multitasking. No preemption occurs.
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Handle Rate Transitions

In this section...

“Rate Transitions” on page 3-19

“Data Transfer Problems” on page 3-21
“Data Transfer Assumptions” on page 3-21
“Rate Transition Block Options” on page 3-22
“Automatic Rate Transition” on page 3-25

“Visualize Inserted Rate Transition Blocks” on page 3-26

“Periodic Sample Rate Transitions” on page 3-28

Rate Transitions

Two periodic sample rate transitions can exist within a model:

+ A faster block driving a slower block

* A slower block driving a faster block

The following sections concern models with periodic sample times with zero offset only.
Other considerations apply to multirate models that involve asynchronous tasks. For
details on how to generate code for asynchronous multitasking, see “Asynchronous
Support” on page 4-2.

In multitasking and pseudomultitasking systems, differing sample rates can cause blocks
to be executed in the wrong order. To prevent possible errors in calculated data, you must
control model execution at these transitions. When connecting faster and slower blocks,
you or the Simulink engine must add Rate Transition blocks between them. Fast-to-slow
transitions are illustrated in the next figure.
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—>
—» T=1s » T =2s
—>
Faster Slower
Block Block
becomes
—
.| Port-based: R _
:: T=1s ”|Tin = 1s; Tout = 2s » T=2s
Faster Rate Transition Slower
Block Block

Slow-to-fast transitions are illustrated in the next figure.

—>
—» T=2s » T=1s
—>
Slower Faster
Block Block
becomes
—
R Port-based: R
:: T=2s »|Tin = 2s; Tout = 1s » T=1s
Slower Rate Transition Faster
Block Block

Note: Although the Rate Transition block offers a superset of the capabilities of the Unit
Delay block (for slow-to-fast transitions) and the Zero-Order Hold block (for fast-to-slow
transitions), you should use the Rate Transition block instead of these blocks.
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Data Transfer Problems

Rate Transition blocks deal with issues of data integrity and determinism associated
with data transfer between blocks running at different rates.

Data integrity: A problem of data integrity exists when the input to a block changes
during the execution of that block. Data integrity problems can be caused by
preemption.

Consider the following scenario:

+ A faster block supplies the input to a slower block.
The slower block reads an input value V; from the faster block and begins
computations using that value.

The computations are preempted by another execution of the faster block, which
computes a new output value V.

A data integrity problem now arises: when the slower block resumes execution, it
continues its computations, now using the “new” input value V5.

Such a data transfer is called unprotected. “Faster to Slower Transitions in Real
Time” on page 3-28 shows an unprotected data transfer.

In a protected data transfer, the output V; of the faster block is held until the slower
block finishes executing.

Deterministic versus nondeterministic data transfer: In a deterministic data transfer,
the timing of the data transfer is completely predictable, as determined by the sample
rates of the blocks.

The timing of a nondeterministic data transfer depends on the availability of data, the
sample rates of the blocks, and the time at which the receiving block begins to execute
relative to the driving block.

You can use the Rate Transition block to protect data transfers in your application

and make them deterministic. These characteristics are considered desirable in most
applications. However, the Rate Transition block supports flexible options that allow you
to compromise data integrity and determinism in favor of lower latency. The next section
summarizes these options.

Data Transfer Assumptions
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When processing data transfers between tasks, Simulink Coder makes these
assumptions:

* Data transitions occur between a single reading task and a single writing task.
* A read or write of a byte-sized variable is atomic.

* When two tasks interact through a data transition, only one of them can preempt the
other.

* For periodic tasks, the faster rate task has higher priority than the slower rate task;
the faster rate task preempts the slower rate task.

+ All tasks run on a single processor. Time slicing is not allowed.

* Processes do not crash or restart (especially while data is transferred between tasks).

Rate Transition Block Options

Several parameters of the Rate Transition block are relevant to its use in code generation
for real-time execution, as discussed below. For a complete block description, see Rate
Transition in the Simulink documentation.

The Rate Transition block handles periodic (fast to slow and slow to fast) and
asynchronous transitions. When inserted between two blocks of differing sample rates,
the Rate Transition block automatically configures its input and output sample rates for
the type of transition; you do not need to specify whether a transition is slow-to-fast or
fast-to-slow (low-to-high or high-to-low priorities for asynchronous tasks).

The critical decision you must make in configuring a Rate Transition block is the choice
of data transfer mechanism to be used between the two rates. Your choice is dictated by
considerations of safety, memory usage, and performance. As the Rate Transition block
parameter dialog box in the next figure shows, the data transfer mechanism is controlled
by two options.



Handle Rate Transitions

E! Function Block Parameters: Rate Transition

—RateTransition

Handle transfer of data between ports operating at different rates. Configuration
options allow vou ko trade ofF transfer delay and code efficiency For safety and
determinism of data transfer. The default configuration assures safe and
deterministic data transfer. The block's behavior depends on option settings andfor
the sample times of its input and output ports, Updating the block diagram causes
ket on the block's icon to indicate its behavior as Follows:

ZOH: Zero Order Hold
1/z: Unit Delay
Ef: Copy input to oukput under semaphore contral
Db_buf; Copy inpuk to output, using double buffers
Copy! Unpratected copy From input to output
NaOp: Mo Operation
Mixed: Expanded to multiple blocks with different
behaviors
—Parameters

[V Ensure data integrity duting data transfer
¥ Ensure deterministic data transfer (masimurn delay)

Initial conditions:

jo

CQukput port sample time options: |Specify ;I

Cutpuk port sample time:

-1

ok Cancel | Help | Apply |

* Ensure data integrity during data transfer: When this option is on, data
transferred between rates maintains its integrity (the data transfer is protected).
When this option is off, the data might not maintain its integrity (the data transfer is
unprotected). By default, Ensure data integrity during data transfer is on.

* Ensure deterministic data transfer (maximum delay): This option is supported
for periodic tasks with an offset of zero and fast and slow rates that are multiples
of each other. Enable this option for protected data transfers (when Ensure data
integrity during data transfer is on). When this option is on, the Rate Transition
block behaves like a Zero-Order Hold block (for fast to slow transitions) or a Unit
Delay block (for slow to fast transitions). The Rate Transition block controls the
timing of data transfer in a completely predictable way. When this option is off, the
data transfer is nondeterministic. By default, Ensure deterministic data transfer
(maximum delay) is on for transitions between periodic rates with an offset of zero;
for asynchronous transitions, it cannot be selected.
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Thus the Rate Transition block offers three modes of operation with respect to data
transfer. In order of level of safety:

Protected/Deterministic (default): This is the safest mode. The drawback of this
mode is that it introduces deterministic latency into the system for the case of slow-
to-fast periodic rate transitions. For that case, the latency introduced by the Rate

Transition block is one sample period of the slower task. For the case of fast-to-slow
periodic rate transitions, the Rate Transition block introduces no additional latency.

Protected/NonDeterministic: In this mode, for slow-to-fast periodic rate
transitions, data integrity is protected by double-buffering data transferred between
rates. For fast-to-slow periodic rate transitions, a semaphore flag is used. The blocks
downstream from the Rate Transition block use the latest available data from the
block that drives the Rate Transition block. Maximum latency is less than or equal to
one sample period of the faster task.

The drawbacks of this mode are its nondeterministic timing. The advantage of this
mode is its low latency.

Unprotected/NonDeterministic: This mode is not recommended for mission-
critical applications. The latency of this mode is the same as for Protected/
NonDeterministic mode, but memory requirements are reduced since neither double-
buffering nor semaphores are required. That is, the Rate Transition block does
nothing in this mode other than to pass signals through; it simply exists to notify
you that a rate transition exists (and can cause generated code to compute incorrect
answers). Selecting this mode, however, generates the least amount of code.

Note In unprotected mode (Ensure data integrity during data transfer option
off), the Rate Transition block does nothing other than allow the rate transition to
exist in the model.

Rate Transition Blocks and Continuous Time

The sample time at the output port of a Rate Transition block can only be discrete

or fixed in minor time step. This means that when a Rate Transition block inherits
continuous sample time from its destination block, it treats the inherited sample time as
Fixed in Minor Time Step. Therefore, the output function of the Rate Transition block
runs only at major time steps. If the destination block sample time is continuous, Rate
Transition block output sample time is the base rate sample time (if solver is fixed-step),
or zero-order-hold-continuous sample time (if solver is variable-step).
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Automatic Rate Transition

The Simulink engine can detect mismatched rate transitions in a multitasking model
during an update diagram and automatically insert Rate Transition blocks to handle
them. To enable this, in the Solver pane of model configuration parameters, select
Automatically handle rate transition for data transfer. The default setting for this
option is off. When you select this option:

*  Simulink handles transitions between periodic sample times and asynchronous tasks.
+ Simulink inserts hidden Rate Transition blocks in the block diagram.

+  Simulink Coder generates code for the Rate Transition blocks that were automatically
inserted. This code is identical to the code generated for Rate Transition blocks that
were inserted manually.

* Automatically inserted Rate Transition blocks operate in protected mode for periodic
tasks and asynchronous tasks. You cannot alter this behavior. For periodic tasks,
automatically inserted Rate Transition blocks operate with the level of determinism
specified by the Deterministic data transfer parameter in the Solver pane.

The default setting is Whenever possible, which enables determinism for data
transfers between periodic sample-times that are related by an integer multiple. For
more information, see “Deterministic data transfer”. To use other modes, you must
insert Rate Transition blocks and set their modes manually.

For example, in this model, SineWave2 has a sample time of 2, and SineWave3 has a
sample time of 3.

|IJ—|_|DSF'
|/

SineWave2

Yy

Froduct Dt

|IJ—|_|DSF'
|/

SineWave3

When you select Automatically handle rate transition for data transfer, Simulink
inserts a Rate Transition block between each Sine Wave block and the Product block.
The inserted blocks have the parameter values needed to reconcile the Sine Wave block
sample times.
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If the input port and output port data sample rates in a model are not multiples of
each other, Simulink inserts a Rate Transition block whose sample rate is the greatest
common divisor (GCD) of the two rates. If no other block in the model contains this new
rate, an error occurs during simulation. In this case, you must insert a Rate Transition
block manually.

Visualize Inserted Rate Transition Blocks

When you select the Automatically handle rate transition for data transfer option,
Simulink inserts Rate Transition blocks in the paths that have mismatched transition
rates. These blocks are hidden by default. To visualize the inserted blocks, update the
diagram. Badge labels appear in the model and indicate where Simulink inserted Rate
Transition blocks during the compilation phase. For example, in this model, three Rate
Transition blocks were inserted between the two Sine Wave blocks and the Multiplexer
and Integrator when the model compiled. The ZOH and DbBuf badge labels indicate

these blocks.
L JJLLL“J KTs | D3 _
Sine Wave?2 ; ——»  smouth

Discrete-Time To Workspace5
Integrator2

_|""'|_IU| I

SineWave3

You can show or hide badge labels using the Display > Signals and Ports > Hidden
Rate Transition Block Indicators setting.

To configure the hidden Rate Transition blocks, right click on a badge label and click on
Insert rate transition block to make the block visible.
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When you make hidden Rate Transition blocks visible:

You can see the type of Rate Transition block inserted as well as the location in the
model.

You can set the Initial Conditions of these blocks.

You can change block parameters for rate transfer.

Validate the changes to your model by updating your diagram.

Y

JJLLLLIJ D2 D3
] KTs | D3
Sine Wave?2

1 —®  smouth
Z_

Discrete-Time To Workspace5
g Integrator2

D3
ﬂu_. |

SineWave3 |

Displaying inserted Rate Transition blocks is not compatible with:
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*  Concurrent execution environment

+  Export-function models

To learn more about the types of Rate Transition blocks, see Rate Transition.

Periodic Sample Rate Transitions

These sections describe cases in which Rate Transition blocks are required for periodic
sample rate transitions. The discussion and timing diagrams in these sections are
based on the assumption that the Rate Transition block is used in its default (protected/
deterministic) mode; that is, the Ensure data integrity during data transfer and
Ensure deterministic data transfer (maximum delay) options are both on. These
are the settings used for automatically inserted Rate Transition blocks.

Faster to Slower Transitions in a Simulink Model

In a model where a faster block drives a slower block having direct feedthrough, the
outputs of the faster block are computed first. In simulation intervals where the slower
block does not execute, the simulation progresses more rapidly because there are fewer
blocks to execute. The next figure illustrates this situation.

t0 t1 t2 t3
— A A y N A
—»| T=1s p T=2s
— T=1s| T=2s |T=1s|T=1s| T=2s |T=1s
Faster Slower
Block Block Time N

A Simulink simulation does not execute in real time, which means that it is not bound
by real-time constraints. The simulation waits for, or moves ahead to, whatever tasks
are required to complete simulation flow. The actual time interval between sample time
steps can vary.

Faster to Slower Transitions in Real Time

In models where a faster block drives a slower block, you must compensate for the fact
that execution of the slower block might span more than one execution period of the
faster block. This means that the outputs of the faster block can change before the slower
block has finished computing its outputs. The next figure shows a situation in which this
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problem arises (T = sample time). Note that lower priority tasks are preempted by higher
priority tasks before completion.

A

N
2 Sec @ T=2s I@ T=2s
§T=1s—>T=2s Task d ) C ) C
Faster Slower A 5
Block Block
T

T=1s @ T=1s @ T=1s @

Time >

=1s @

1 Sec A 5 é > A 5
Task

@ The faster task (T=1s) completes.
@ Higher priority preemption occurs.

@ The slower task (T=2s) resumes and its inputs
have changed. This leads to unpredictable results.

In the above figure, the faster block executes a second time before the slower block has
completed execution. This can cause unpredictable results because the input data to the
slow task 1s changing. Data might not maintain its integrity in this situation.

To avoid this situation, the Simulink engine must hold the outputs of the 1 second
(faster) block until the 2 second (slower) block finishes executing. The way to accomplish
this is by inserting a Rate Transition block between the 1 second and 2 second blocks.
The input to the slower block does not change during its execution, maintaining data
integrity.

—>
— T=1s [—Tin=1Tout=2—» T=2s
e

Faster Block Rate Transition Slower Block

It is assumed that the Rate Transition block is used in its default (protected/
deterministic) mode.

The Rate Transition block executes at the sample rate of the slower block, but with the
priority of the faster block.
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When you add a Rate Transition block, the block executes before the 2 second block (its
priority is higher) and its output value is held constant while the 2 second block executes
(it executes at the slower sample rate).

Slower to Faster Transitions in a Simulink Model

In a model where a slower block drives a faster block, the Simulink engine again
computes the output of the driving block first. During sample intervals where only the
faster block executes, the simulation progresses more rapidly.

The next figure shows the execution sequence.

t0 t1 t2 t3
_> A A F N V' N
—»| T=2s » T=1s
- T=2s |T=1s|T=1s| T=2s |T=1s|T=1s
Slower Faster
Block Block Time ,

As you can see from the preceding figures, the Simulink engine can simulate models with
multiple sample rates in an efficient manner. However, a Simulink simulation does not
operate in real time.

Slower to Faster Transitions in Real Time

In models where a slower block drives a faster block, the generated code assigns the
faster block a higher priority than the slower block. This means the faster block is
executed before the slower block, which requires special care to avoid incorrect results.
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@ The faster block executes a second time prior
to the completion of the slower block.

@ The faster block executes before the slower block.

This timing diagram illustrates two problems:

+ Execution of the slower block is split over more than one faster block interval. In
this case the faster task executes a second time before the slower task has completed
execution. This means the inputs to the faster task can have incorrect values some of

the time.

+ The faster block executes before the slower block (which is backward from the way
a Simulink simulation operates). In this case, the 1 second block executes first; but
the inputs to the faster task have not been computed. This can cause unpredictable

results.

To eliminate these problems, you must insert a Rate Transition block between the slower
and faster blocks.

—>
— T=2s |—PpiTin=2 Tout=1p—Pp| T=1s
—
Slower Rate Transition Faster
Block Block

It is assumed that the Rate Transition block is used in its default (protected/
deterministic) mode.
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The next figure shows the timing sequence that results with the added Rate Transition

block.
(@)

_ RT RT
/’ T=2s update update
t0
V' N
output T=1s T=1s @

v

Time

Three key points about transitions in this diagram (refer to circled numbers):

1  The Rate Transition block output runs in the 1 second task, but at a slower rate (2
seconds). The output of the Rate Transition block feeds the 1 second task blocks.

2 The Rate Transition update uses the output of the 2 second task to update its
internal state.

3 The Rate Transition output in the 1 second task uses the state of the Rate Transition
that was updated in the 2 second task.

The first problem is alleviated because the Rate Transition block is updating at a slower
rate and at the priority of the slower block. The input to the Rate Transition block (which
is the output of the slower block) is read after the slower block completes executing.

The second problem is alleviated because the Rate Transition block executes at a slower
rate and its output does not change during the computation of the faster block it is
driving. The output portion of a Rate Transition block is executed at the sample rate of
the slower block, but with the priority of the faster block. Since the Rate Transition block
drives the faster block and has effectively the same priority, it is executed before the
faster block.
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Note This use of the Rate Transition block changes the model. The output of the slower

block is now delayed by one time step compared to the output without a Rate Transition
block.
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Configure Time-Based Scheduling
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In this section...

“Configure Start and Stop Times” on page 3-34
“Configure the Solver Type” on page 3-35

“Configure the Tasking Mode” on page 3-35

For details about solver options, see “Solver Pane” in the Simulink reference
documentation.

Configure Start and Stop Times

The Stop time must be greater than or equal to the Start time. If the stop time is
zero, or if the total simulation time (Stop minus Start) is less than zero, the generated
program runs for one step. If the stop time is set to inF, the generated program runs
indefinitely.

When using the GRT or Wind River® Tornado® (VxWorks® 5.x) targets, you can override
the stop time when running a generated program from the Microsoft Windows command
prompt or UNIX' command line. To override the stop time that was set during code
generation, use the —tf switch.

model -tf n
The program runs for n seconds. If n = in¥, the program runs indefinitely.

Certain blocks have a dependency on absolute time. If you are designing a program that
is intended to run indefinitely (Stop time = inf), and your generated code does not use
the rtModel data structure (that is, it uses simstructs instead), you must not use
these blocks. See “Absolute Time Limitations” on page 2-12 for a list of blocks that can
potentially overflow timers.

If you know how long an application that depends on absolute time needs to run, you can
prevent the timers from overflowing and force the use of optimal word sizes by specifying
the App