Simulink® Coder™

User's Guide

A

MATLAB&SIMULINK

R2015b <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ User's Guide

© COPYRIGHT 2011-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 8.0 (Release 2011a)

Revised for Version 8.1 (Release 2011b)
Revised for Version 8.2 (Release 2012a)
Revised for Version 8.3 (Release 2012b)
Revised for Version 8.4 (Release 2013a)
Revised for Version 8.5 (Release 2013b)
Revised for Version 8.6 (Release 2014a)
Revised for Version 8.7 (Release 2014b)
Revised for Version 8.8 (Release 2015a)
Revised for Version 8.9 (Release 2015b)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Model Architecture and Design

Modeling
Configure a Model for Code Generation 1-2
Supported Products and Block Usage 1-4
Related Products 1-4
Simulink Built-In Blocks That Support Code
Generationoiiiiiin 1-6
Simulink Block Data Type Support Table 1-25
Block Set Support for Code Generation 1-25
Modeling Semantic Considerations 1-26
Data Propagation 1-26
Sample Time Propagation 1-28
Latches for Subsystem Blocks 1-29
Block Execution Order 1-29
Algebraic Loops 1-31
Timers
Absolute and Elapsed Time Computation 2-2
About Timers 2-2
Timers for Periodic and Asynchronous Tasks 2-3
Allocation of Timersc.ouirn... 2-3
Integer Timers in Generated Code 2-3

vii

viii

Contents

Elapsed Time Counters in Triggered Subsystems 2-4

Access Timers Programmatically 2-5
About Timer APIs 2-5
C API for S-Functions 2-5
TLC API for Code Generation 2-7
Generate Code for an Elapsed Time Counter 2-9
Absolute Time Limitations 2-12

Time-Based Scheduling

3

Time-Based Scheduling and Code Generation 3-2
Sample Time Considerations 3-2
Tasking Modes, 3-2
Model Execution and Rate Transitions 3-4
Execution During Simulink Model Simulation 3-5
Model Execution in Real Time 3-5
Single-Tasking Versus Multitasking Operation 3-6

Modeling for Single-Tasking Execution 3-7
Single-Tasking Mode 3-7
Build a Program for Single-Tasking Execution 3-7
Single-Tasking Execution 3-8

Modeling for Multitasking Execution 3-11
Multitasking and Pseudomultitasking Modes 3-11
Build a Program for Multitasking Execution 3-13
Execute Multitasking Models 3-13
Multitasking Execution 3-15

Handle Rate Transitions 3-19
Rate Transitions 3-19
Data Transfer Problems 3-21
Data Transfer Assumptions 3-21
Rate Transition Block Options 3-22
Automatic Rate Transition 3-25
Visualize Inserted Rate Transition Blocks 3-26

Periodic Sample Rate Transitions

Configure Time-Based Scheduling
Configure Start and Stop Times
Configure the Solver Type
Configure the Tasking Mode

3-28

3-34
3-34
3-35
3-35

Event-Based Scheduling

4

Asynchronous Events
Asynchronous Support
Block Library for Wind River VxWorks Real-Time

Operating System,
Access the VxWorks Block Library
Generate Code with the VxWorks Library Blocks
Examples and Additional Information

Generate Interrupt Service Routines
Connecting the Async Interrupt Block
Requirements and Restrictions
Performance Considerations
Using the Async Interrupt Block in Simulation and Code

Generationcuiiininnen...
Dual-Model Approach: Simulation
Dual-Model Approach: Code Generation

Spawn a Wind River VxWorks Task
Initialization Code
Task and Task Synchronization Code
Task Termination Code

Rate Transitions and Asynchronous Blocks
About Rate Transitions and Asynchronous Blocks
Handle Rate Transitions for Asynchronous Tasks
Handle Multiple Asynchronous Interrupts

Use Timers in Asynchronous Tasks

4-2
4-2

4-2
4-3
4-4
4-4

4-5
4-5
4-5
4-6

4-6
4-7
4-8

4-13
4-15
4-15
4-18

4-19
4-19
4-20
4-21

4-24

ix

Create a Customized Asynchronous Library 4-26

About Implementing Asynchronous Blocks 4-26
Async Interrupt Block Implementation 4-27
Task Sync Block Implementation 4-31
asynclib.tle Support Library 4-32
Import Asynchronous Event Data for Simulation 4-34
Capabilities 4-34
Input Data Format 4-34
Example 4-34
Asynchronous Support Limitations 4-38
Asynchronous Task Priority 4-38
Convert an Asynchronous Subsystem into a Model
Reference 4-38
Subsystems
Code Generation of Subsystems 5-2
Subsystem Code Dependence 5-3

Generate Code and Executables for Individual

Subsystem 5-4
Subsystem Build Limitations 5-6
Inline Subsystem Code 5-7
Configure Subsystem to Inline Code 5-7
Exceptions to Inlining 5-8

Generate Subsystem Code as Separate Function and
Files e 5-10

Generate Reusable Function for Identical Subsystems

Within a Model 5-11
Considerations for Function Packaging Options Auto and

Reusable function 5-13

Code Reuse for Subsystems with Mask Parameters . . . 5-13

Optimize Code for Identical Nested Subsystems 5-14

Contents

Generate Reusable Code for Subsystems Containing S-

Function Blocks 5-15
Generate Reusable Code from Stateflow Charts 5-16
Code Reuse Limitations for Subsystems 5-17

Blocks That Prevent Code Reuse 5-18
Code Reuse Limitations for Subsystems Shared Across
Referenced Models 5-18
Code Reuse For Subsystems Shared Across Models . . 5-20
Reusable Library Subsystem 5-21
Code Generation of a Reusable Library Subsystem . . . 5-21
Reusable Library Subsystem Code Placement and
Naming 5-22
Reusable Library Subsystem in the Top Model 5-22
Reusable Library Subsystem Connected to Root
Outport e 5-22
Code Generation of Constant Parameters 5-23
Shared Constant Parameters for Code Reuse 5-24
Suppress Shared Constants in the Generated Code . . . 5-25
Shared Constant Parameters Limitations 5-27

Generate Reusable Code for Subsystems Shared Across

Models e 5-28
Determine Why Subsystem Code Is Not Reused 5-35
Review Subsystems Section of HTML Code Generation
Report 5-35
Compare Subsystem Checksum Data 5-35

Code Generation of Functions and Function

Callers
Modeling Functions and Callers for Code Generation . 6-2
Functions and Callers 6-2

xi

xii

7]

Contents

Input and Output Arguments 6-2
Function and Function Caller Definitions Across
Models 6-3
Code Generation Files 6-3
Generate Code for Functions and Callers 6-6
Generate Code for the Function Definition 6-6
Generate Code for the Caller Definition 6-8
Referenced Models
Code Generation of Referenced Models 7-2
Generate Code for Referenced Models 7-4
About Generating Code for Referenced Models 7-4
Create and Configure the Subsystem 7-4
Convert Model to Use Model Referencing 7-7
Generate Model Reference Code for a GRT Target 7-11
Work with Code Generation Folders 7-14
Code Generation Folder Structure for Model Reference
Targets e 7-15
Configure Referenced Models 7-16
Build Model Reference Targets 7-17
Reduce Change Checking Time 7-17
Simulink Coder Model Referencing Requirements . . . 7-18
Configuration Parameter Requirements 7-18
Naming Requirements 7-21
Custom Target Requirements 7-22
Storage Classes for Signals Used with Model Blocks . . 7-23
Storage Classes for Parameters Used with Model
Blocks 7-23
Signal Name Mismatches Across Model Reference
Boundary 7-24

Inherited Sample Time for Referenced Models 7-26

Customize Library File Suffix and File Type 7-28
Reusable Code and Referenced Models 7-29
General Considerationsu.u... 7-29
Code Reuse and Model Blocks with Root Inport or Outport
Blocks 7-29
Simulink Coder Model Referencing Limitations 7-33
Customization Limitations 7-33
Data Logging Limitations 7-33
State Initialization Limitation 7-34
Reusability Limitations 7-34
S-Function Limitations 7-34
Simulink Tool Limitations 7-35
Subsystem Limitations 7-35
Target Limitations 7-35
Other Limitationsu.u...... 7-35
Combined Models
Combined Models 8-2

Use GRT with Reusable Function Packaging to Combine

Models 8-3
Share Data Across Models 8-3
Timing Issues 8-3
Data Logging and External Mode Support 8-4

Configure Model Parameters

9

Platform Options for Development and Deployment . . 9-2

xiii

xiv

Contents

Configure Target Hardware
Identify the Hardware Board
Identify the Device Vendor
Identify the Device Type
Register Additional Device Vendor and Device Type

Values
Set Bit Lengths for Device Data Types
Set Byte Ordering Used By Device
Set Quotient Rounding Behavior for Signed Integer

Division
Set Arithmetic Right Shift Behavior for Signed Integers
Update Release 14 Hardware Configuration

Configure Production Hardware Characteristics
Configure Test Hardware Characteristics
Control the Location for Generated Files
Control Generated Files Location Used for Simulation
Control the Location for Code Generation Files

Override Build Folder Settings for Current Session . .

9-3
9-4
9-5
9-5
9-5
9-8
9-9
9-10
9-11
9-11
9-13
9-14
9-15
9-17
9-19

9-21

Model Protection

10

Protect a Referenced Model
Requirements for Protecting a Model

Harness Model

Protected Model Report

Code Generation Support in a Protected Model
Protected Model Requirements to Support Code

Generation

Protected Model File

10-2
10-3

10-4

10-5

10-6

10-6

10-8

Create a Protected Model 10-10

Protected Model Creation Settings 10-15
Open Read-Only View of Model 10-15
Simulate e 10-16
Use Generated Code 10-16

Create a Protected Model with Multiple Targets 10-18

Use a Protected Model with Multiple Targets 10-19

Test the Protected Model 10-20

Save Base Workspace Definitions 10-22

Package a Protected Model 10-23

Specify Custom Obfuscator for Protected Model 10-24

Stateflow Blocks

11

Code Generation of Stateflow Blocks 11-2
Comparison of Code Generation Methods 11-2
Generate Reusable Code for Atomic Subcharts 11-5
How to Generate Reusable Code for Linked Atomic
Subcharts 11-5
How to Generate Reusable Code for Unlinked Atomic
Subcharts 11-6
Generate Reusable Code for Unit Testing 11-7
Goal of the Tutorial 11-7
Convert a State to an Atomic Subchart 11-8
Specify Code Generation Parameters 11-9
Generate Code for Only the Atomic Subchart 11-10
Inline State Functions in Generated Code 11-13
Inlined Generated Code for State Functions 11-13
How to Set the State Function Inline Option 11-15

Xv

xvi

Best Practices for Controlling State Function Inlining 11-15

Fuel Rate Control System with Stateflow Charts . .. 11-16

Data, Function, and File Definition

Data Representation

12|

Default Data Structures in the Generated Code 12-2
Use Enumerated Data in Generated Code 12-5
Enumerated Data Types 12-5
Specify Integer Data Type for Enumeration 12-5
Customize Enumerated Data Type 12-7
Control Enumerated Type Implementation in Generated
Code 12-10
Type Casting for Enumerations 12-12
Enumerated Type Limitations 12-13
Structure Parameters and Generated Code 12-14
About Structure Parameters and Generated Code . . . 12-14
Configure Structure Parameters for Generated Code . 12-14
Create Tunable Structure Parameter 12-15
Control Name of Structure Parameter Type 12-15
Data Stores in Generated Code 12-18
About Data Stores 12-18
Storage Classes for Data Store Memory Blocks 12-18
Data Store Buffering in Generated Code 12-20
Generate Code for Data Store Memory Blocks 12-24
Structures in Generated Code Using Data Stores . .. 12-25
Explore Example Model 12-25
Configure Data Store 12-25
Write to Data Store Elements 12-26
Generate Code with Data Store Structure 12-28

Contents

Subnormal Number Performance 12-29
Simulation Time With and Without Subnormal

13|

Numbers 12-30

Flush Subnormal Numbers to Zero 12-31
Specify Single Precision 12-34
Parameters

Parameter Storage in the Generated Code 13-2
Default Parameter Storage 13-2
Tunable Parameter Storage 13-5
Inline Parameters in Generated Code 13-7
About Inlining Parameters 13-7
Specify Some Parameters as Noninline 13-7
Tunable Expressions 13-9
Expression Tunability in Generated Code 13-9
Tunable Expressions in Masked Subsystems 13-13
Tunable Expression Limitations 13-15

Control Parameter Data Types in the Generated
Code 13-18
Tunable Parameter Data Type Considerations 13-22

Control Parameter Representation and Declare Tunable

Parameters in the Generated Code 13-25
Tunable Parameter Storage Classes 13-25
Parameter Objects for Code Generation 13-27
Create and Configure Parameter Object for Code

Generation i, 13-27
Programmatically Create and Configure Parameter Object
for Code Generation 13-28

Declare Workspace Variables as Tunable Parameters
Using the Model Parameter Configuration Dialog

BoX . 13-29
Set Tunable Parameter Minimum and Maximum
Values o 13-32

xvil

xviii

Tunable Parameters in the Generated Code for Referenced

Models 13-32
Interfaces for Tuning Parameters 13-33
Linear Block Parameter Tunability 13-33

Parameter Object Configuration Quick Reference

Diagram 13-35
Signals

Signal Representation in Generated Code 14-2
Signal Storage Conceptsc...... 14-3
Signals with Auto Storage Class 14-5
Signals with Test Points 14-8
Symbolic Naming Conventions for Signals 14-9
Summary of Signal Storage Class Options 14-10
Interfaces for Monitoring Signals 14-11

Control Signals and States in Code by Applying Storage

Classes i 14-12
Storage Classes for Signals and States 14-13
Signal Objects for Code Generation 14-16
Create and Configure Signal Object for Code

Generationiiiiini.. 14-16
Programmatically Create and Configure Signal Object for
Code Generationcovuuun.. 14-17
Apply Storage Classes Directly to Signal Lines and Block
States 14-18
Apply Storage Classes Directly to Signals and States
Using Embedded Signal Objects 14-18
Resolve Conflicts in Configuration of Signal Objects . 14-20
Control Code for Nonvirtual Bus Signals 14-22
Explore Example Model 14-22
Control Code for Bus Type 14-22
Control Code for Bus Signal 14-23
Generate and Inspect Code 14-23
Maximize Signal Storage Optimization 14-25

Contents

Control Signal and State Initialization in the Generated

Code e 14-26
Signal and State Initialization in the Generated Code 14-26
Generate Tunable Initial Conditions 14-28
Generate Tunable Initial Condition Structure for Bus

Signal 14-31

Block States

15

Continuous Block State Naming in Generated Code . . 15-2
Default Block State Naming Convention 15-2
Define User Block State Names 15-3

Discrete Block State Naming in Generated Code 15-4
Default Block State Naming Convention 15-5
Define User Block State Names 15-6

Entry-Point Functions and Scheduling

16

Entry-Point Functions and Scheduling 16-2
Generate Reentrant Code from Top-Level Models 16-4

Generate C++ Class Interface to Model or Subsystem

Code e 16-5
About C++ Class Code Interface Packaging 16-5
Generate C++ Class Interface to Model Code 16-5
Generate C++ Class Interface to Nonvirtual Subsystem

Code e 16-7

C++ Class Interface Limitations 16-7
About Model Execution 16-9
Non-Real-Time Single-Tasking Systems 16-11

xix

XX

Non-Real-Time Multitasking Systems 16-12
Real-Time Single-Tasking Systems 16-14
Real-Time Multitasking Systems 16-16

Multitasking Systems Using Real-Time Tasking

Primitives 16-18
Program Timing 16-20
Program Execution 16-22
External Mode Communication 16-23

Data Logging in Single-Tasking and Multitasking Model
Execution 16-24

Rapid Prototyping and Embedded Model Execution
Differences 16-25

Rapid Prototyping Model Functions 16-26

Code Generation

Contents

17

Configuration
Code Generation Configuration 17-2
Open the Model Configuration for Code Generation . . . 17-2

Configure Code Generation Parameters for Model
Programmatically 17-4

Check Model and Configuration for Code Generation 17-6
Check Model During Code Generation 17-7

Application Objectives Using Code Generation
Advisor
High-Level Code Generation Objectives
Configure Model for Code Generation Objectives Using
Code Generation Advisor
Configure Model for Code Generation Objectives Using
Configuration Parameters Dialog Box

Target e
Hardware
Available Targets
About Targets and Code Formats
Types of Target Code Formats
Targets and Code Formats
Targets and Code Styles
Backwards Compatibility of Code Formats
Select a Target i ...
Template Makefiles and Make Options
Custom Targets
Standard Math Libraries
Change the Standard Math Library
Specify Target Interfaces

Change Programming Language
Configure Code Comments
Construction of Generated Identifiers

Identifier Name Collisions and Mangling
Identifier Name Collisions with Referenced Models . .

Specify Identifier Length to Avoid Naming Collisions
Specify Reserved Names for Generated Identifiers . .

Reserved Keywords
C Reserved Keywords
C++ Reserved Keywords
Reserved Keywords for Code Generation
Simulink Coder Code Replacement Library Keywords

17-12
17-12
17-13
17-16
17-17
17-28
17-28
17-30
17-33
17-35
17-41
17-41
17-41
17-42

17-46

17-47

17-48

17-49
17-49

17-50
17-51
17-52
17-52
17-53
17-53
17-54

17-56

xx1

xxii

Contents

Internationalization Support

18]

Internationalization and Code Generation
Locale Settings
Prepare to Generate Code for Mixed Languages and

Locales .

XML Escape Sequence Replacements
Character Set Limitations

18-2
18-2

18-2
18-3
18-3

Source Code Generation

19

Initiate Code Generation

Model and Test Environment
About This Example
Functional Design of the Model
View the Top Model
View the Subsystems
Simulation Test Environment
Run Simulation Tests

Key Points
Learn More

Configure Model and Generate Code
About This Example
Configure the Model for Code Generation
Save Your Model Configuration as a MATLAB

Function

Check the Model for Adverse Conditions and Code
Generation Settings
Generate Code for the Model
Review the Generated Code
Generate an Executable

Key Points
Learn More

19-2

19-3
19-3
19-4
19-4
19-5
19-6
19-11
19-12
19-13

19-14
19-14
19-15

19-16

19-17
19-17
19-17
19-18
19-19
19-20

Configure Data Interface
About This Example
Declare Data
Use Data Objects
Add New Data Objects
Enable Data Objects for Generated Code
Effects of Simulation on Data Typing
Manage Data
Key Points
Learn More i

Call External C Functions
About This Example
Include External C Functions in a Model
Create a Block That Calls a C Function
Validate External Code in the Simulink Environment
Validate C Code as Part of a Model
Call a C Function from Generated Code
Key Points
Learn More

Reload Generated Code

Generated Source Files and File Dependencies
About Generated Files and File Dependencies
Header Dependencies When Interfacing Legacy/Custom

Code with Generated Code
Dependencies of the Generated Code
Specify Include Paths in Simulink Coder Generated

Source Files

Files and Folders Created During Build Process
Files Created During the Build Process
Folders Used By the Build Process

How Code Is Generated From a Model
Model Compilation
Code Generationouuiiniiinen.o..

Code Generation of Matrices and Arrays
Simulink Coder Matrix Parameters
Internal Data Storage for Complex Number Arrays . .

19-21
19-21
19-21
19-22
19-25
19-26
19-27
19-28
19-29
19-29

19-30
19-30
19-31
19-31
19-33
19-34
19-36
19-36
19-36

19-37

19-38
19-38

19-40
19-49

19-54

19-57
19-57
19-62

19-64
19-64
19-64

19-66

19-67
19-69

xx1iii

xxiv

Contents

Generated Code Considerations
Requirements for Signed Integer Representation
Default Folder for Code Generation

About Shared Utility Code
Controlling Shared Utility Code Placement
rtwtypes.h and Shared Utility Code

Incremental Shared Utility Code Generation and
Compilation

Shared Utility Checksum
About the Shared Utility Checksum
View the Shared Utility Checksum Hash Table
Relate the Shared Utility Checksum to Configuration

Parameters,

Shared Fixed-Point Utility Functions

Share User-Defined Data Types Across Models
About Sharing Data Types
Example: Sharing Simulink Data Type Objects
Example: Sharing Enumerated Data Types

Generate Code Using Simulink® Coder™

19-70
19-70
19-70
19-71
19-72

19-73

19-74
19-75
19-75
19-75
19-77
19-80
19-82
19-82
19-83
19-84

19-87

Report Generation

20

Reports for Code Generation

HTML Code Generation Report Location

HTML Code Generation Report for Referenced
Models

Generate a Code Generation Report

20-2

20-3

20-4

20-5

Generate Code Generation Report After Build
Process

Open Code Generation Report
Limitation

Generate Code Generation Report Programmatically
Search Code Generation Report
View Code Generation Report in Model Explorer . . .

Package and Share the Code Generation Report
Package the Code Generation Report
View the Code Generation Report

Document Generated Code with Simulink Report
Generator
Generate Code for the Model
Open the Report Generator
Set Report Name, Location, and Format
Include Models and Subsystems in a Report
Customize the Report
Generate the Report

20-11

20-12

20-14
20-14
20-15

20-16
20-17
20-17
20-19
20-20
20-21
20-22

Code Replacement for Simulink Models

21

What Is Code Replacement?
Code Replacement Libraries
Code Replacement Terminology
Code Replacement Limitations
Replace Code Generated from Simulink Models

Choose a Code Replacement Library
About Choosing a Code Replacement Library

21-2

21-4

21-6

21-9

21-10

21-13

21-13

XXV

xxvi

Deployment

Contents

22

Explore Available Code Replacement Libraries

Explore Code Replacement Library Contents . .

Rapid Simulations
About Rapid Simulation
Rapid Simulation Advantage
General Rapid Simulation Workflow

Identify Rapid Simulation Requirements

Configure Inports to Provide Simulation Source

Desktops

Data .

Configure and Build Model for Rapid Simulation

Set Up Rapid Simulation Input Data

Scripts for Batch and Monte Carlo Simulations
Run Rapid Simulations

Rapid Simulation Target Limitations

Generated S-Function Block
About Object Libraries

Create S-Function Blocks from a Subsystem . .
Tunable Parameters in Generated S-Functions
System Target File and Template Makefiles . .
Checksums and the S-Function Target

S-Function Target Limitations

22-2
22-2
22-3
22-3
22-4
22-6
22-6
22-8
22-18
22-18
22-29

22-31
22-31
22-34
22-39
22-41
22-42
22-42

Real-Time Systems

23|

Real-Time System Rapid Prototyping

About Real-Time Rapid Prototyping

Goals of Real-Time Rapid Prototyping
Refine Code With Real-Time Rapid Prototyping

23-2
23-2
23-2
23-3

Hardware-In-the-Loop (HIL) Simulation 23-5
About Hardware-In-the-Loop Simulation 23-5
Set Up and Run HIL Simulations 23-6

External Code Integration

24

Integration Options 24-3
About Integration Options 24-3
Types of External Code Integration 24-3

Reuse Algorithmic Components in Generated Code . . 24-6
Reusable Algorithmic Components 24-6
Integrate External MATLAB Code 24-6
Integrate External Cor C++ Code 24-8
Integrate Fortran Code 24-12
Integration Considerations for Reusable Algorithmic

Componentsuuuiiiuiinnein.. 24-12

Deploy Algorithm Code Within a Target
Environment 24-14

Export Generated Algorithm Code for Embedded
Applications 24-18

Export Algorithm Executables for System Simulation 24-21
Modify External Code for Language Compatibility . . 24-22
Automate S-Function Generation 24-23

Integrate External C++ Code Into a Model Using

Stateflow 24-27

Integrate External Code Using Legacy Code Tool . .. 24-31

Legacy Code Tool and Code Generation 24-31
Generate Inlined S-Function Files for Code

Generation i 24-32

Apply Code Style Settings to Legacy Functions 24-32

Address Dependencies on Files in Different Locations 24-33

xxvii

Deploy S-Functions for Simulation and Code
Generation i, 24-34

Configure Model for External Code Integration 24-35

Integrate External C and C++ Code Into a Model for

Code Generation Using Stateflow 24-38
Insert Custom Code Blocks 24-41
Custom Code Library 24-41
Embed Custom Code Directly Into MdlStart Function 24-44
Custom Code in Subsystems 24-47
Preserve User Files in Build Folder 24-48
S-Functions and Code Generation 24-49
Classes of Problems Solved by S-Functions 24-49
Types of S-Functions 24-50
Basic Files Required for Implementation 24-52
Guidelines for Writing S-Functions 24-53
Write Noninlined S-Functions 24-54
About Noninlined S-Functions 24-54
Guidelines for Writing Noninlined S-Functions 24-54
Noninlined S-Function Parameter Type Limitations . 24-55
Write Wrapper S-Functions 24-57
About Wrapper S-Functions 24-57
MEX S-Function Wrapper 24-57
TLC S-Function Wrapper 24-62
The Inlined Code 24-65
Write Fully Inlined S-Functions 24-67
Multiport S-Function 24-67
Write Fully Inlined S-Functions with mdlRTW
Routine 24-68
About S-Functions and mdIRTW 24-68
S-Function RTWdata 24-69
Direct-Index Lookup Table Algorithm 24-69
Direct-Index Lookup Table Example 24-71
Guidelines for Writing Inlined S-Functions 24-88

xxviii Contents

Write S-Functions That Support Expression Folding 24-89

About S-Functions that Support Expression Folding . 24-89
Categories of Output Expressions 24-90
Acceptance or Denial of Requests for Input

Expressions 24-94
Expression Folding in a TLC Block Implementation . 24-96

S-Functions That Specify Port Scope and Reusability 24-101

S-Functions That Specify Sample Time Inheritance

Rules 24-106
S-Functions That Support Code Reuse 24-108
S-Functions for Multirate Multitasking

Environments 24-109

About S-Functions for Multirate Multitasking
Environments 24-109
Rate Grouping Support in S-Functions 24-109
Create Multitasking, Multirate, Port-Based Sample Time
S-Functions, 24-110
Build S-Functions 24-116
About Build Support for S-Functions 24-116
Implicit Build Support 24-116
Specify Additional Source Files for an S-Function . . 24-117
Use TLC Library Functions 24-118
Precompile S-Function Libraries 24-119

Use rtwmakecfg.m API to Customize Generated

Makefiles 24-123
OVEIVIEW . . o ittt e 24-123
Create the rtwmakecfg Function 24-124
Modify the Template Makefile for rtwmakecfg 24-126

Integrate Custom C Code for Library Charts 24-128
Integrate Custom C Code for All Charts 24-130

xxix

XXX

Contents

Program Building, Interaction, and Debugging

25

Compiler or IDE Selection and Configuration

Compilers and the Build Process
Language Standards Compliance

Language Considerations

C++ Language Limitations
Choose and Configure Compiler o

n Microsoft Windows

Choose and Configure Compiler on UNIX

Include S-Function Source Code

Troubleshoot Compiler Issues . ..
Compiler Version Mismatch Erro

rS ... o oo e e

Generated Executable Image Produces Incorrect

Results

Compile-Time Issues

LCC Compiler Does Not Support & in Source Folder

Paths

Configure Build Process
Choose a Build Process
Toolchain Approach
Upgrade Model to Use Toolchain
Template Makefile Approach . . .
Specify TLC Options

Initiate the Build Process

Approach

Build a Generic Real-Time Program

Building a Program
Working Folder

Build and Code Generation Folders

Set Simulation Parameters
Select a Target Configuration . .
Set Code Generation Parameters
Build and Run a Program
Contents of the Build Folder . . .

How Executable Programs Are Built From Models . .

Build Process Steps
Customized Makefile Generation

25-2
25-2
25-3
25-3
25-4
25-5
25-5
25-6

25-7
25-7

25-7
25-8

25-9

25-10
25-10
25-11
25-12
25-15
25-17

25-19

25-20
25-20
25-20
25-21
25-21
25-22
25-23
25-27
25-28

25-30
25-30
25-30

Rebuild a Model

Control Regeneration of Top Model Code
Force Regeneration of Top Model Code

Reduce Build Time for Referenced Models
Parallel Building For Large Model Reference

Hierarchies,

Parallel Building Configuration Requirements

Build Models In a Parallel Computing Environment .
Locate Parallel Build Logs

Relocate Code to Another Development Environment
Code Relocation
Package Code Using the Graphical User Interface . . .
Package Code Using the Command-Line Interface . . .
packNGo Function Limitations

Executable Program Generation
Build and Run a Program

Profile Code Performance
About Profiling Code Performance
How to Profile Code Performance
Run Profiling Hooks for Generated Code
Profiling Limitation

25-32

25-33
25-34

25-35

25-35
25-36
25-36
25-38

25-40
25-40
25-40
25-41
25-44

25-46

25-49

25-52
25-52
25-52
25-54
25-55

Host/Target Communication

26|

About Host/Target Communication

Set Up an External Mode Communication Channel . .
External Mode Communication Channel Setup
Set Upthe Model
Build the Target Executable
Run the External Mode Target Program
Tune Parameters

xxx1

xxxii

Contents

Configure and Use External Mode
Configure External Mode Options for Code Generation
Target Interfacing
Control Host and Target Execution
Control External Mode Operations
Connecting, Starting, and Stopping
Uploading Data to Floating Scopes
Parameter Downloading
External Signal Uploading and Triggering
Data Archiving

External Mode Compatible Blocks and Subsystems .
Compatible Blocks
Signal Viewing Subsystems
Supported Blocks for Data Archiving

External Mode Communication
About External Mode Communication
Download Mechanism
Inlined and Tunable Parameters

Choose Communication Protocol for Client and
SerVer
Introduction
Using the TCP/IP Implementation
Using the Serial Implementation
Run the External Program
Implement an External Mode Protocol Layer

Use External Mode Programmatically
Generate External Mode and C API Data Interfaces .

Animate Stateflow Charts in External Mode
Animate States During Simulation in External Mode
View Test Point Data in Floating Scopes and Signal

VieWers . ..ot e

External Mode Limitations
Limitation on Changing Parameters
Limitation on Mixing 32-bit and 64-bit Architectures .
Limitation on Uploading Data
Limitation on Uploading Variable-Size Signals

26-16
26-16
26-19
26-20
26-21
26-22
26-23
26-23
26-25
26-30

26-34
26-34
26-34
26-36

26-37
26-37
26-37
26-39

26-40
26-40
26-40
26-43
26-45
26-48

26-49

26-54

26-56
26-56

26-57

26-58
26-58
26-59
26-59
26-59

Limitation on Signal Value Display in Simulation . . . 26-59

Limitation on Tunable Structure Parameters 26-60
Limitation on Archiving Data 26-60
Limitation on Scopes in Referenced Models 26-60
Logging
27

Logging e 27-2
Log Data for Analysis 27-2
About Logging to MAT-Files 27-9
Configure State, Time, and Output Logging 27-10
Log Data with Scope and To Workspace Blocks 27-12
Log Data with To File Blocks 27-12

Data Logging Differences Between Single- and
Multitasking 27-13

Data Interchange Using the C API

28

Data Interchange Usingthe CAPI 28-2
About Data Exchangeand CAPI 28-2
Generate CAPI Files 28-3
Description of CAPI Files 28-6
Use the C API in an Application 28-22
C API Limitationsou...... 28-34

ASAP2 Data Measurement and Calibration

29|

ASAP2 Data Measurement and Calibration 29-2
About ASAP2 Data Measurement and Calibration . . . 29-2
Targets Supporting ASAP2 29-3
Define ASAP2 Information 29-3

xxxiii

XxXxiv

Generate an ASAP2 File 29-9
Structure of the ASAP2 File 29-12
Generate ASAP2 and C API Data Interfaces 29-13

Direct Memory Access to Generated Code

30

Direct Memory Access to Generated Code 30-2

Performance

Optimizations for Generated Code

31

Optimization Parameters 31-2

Advice About Optimizing Models for Code
Generation i 314

Design Tips for Optimizing Generated Code for

Stateflow Objects 31-5
Do Not Access Machine-Parented Data In a Graphical
Function 31-5
Be Explicit About the Inline Option of a Graphical
Function 31-5
Avoid Using Multiple Edge-Triggered Events in Stateflow
Charts e i 31-5
Combine Input Signals of a Chart Into a Single Bus
Object ..ot 31-5
Use Charts with Discrete Sample Times 31-6
Control Compiler Optimizations 31-7
Optimization Tools and Techniques 31-8

Contents

Control Memory Allocation for Time Counters 31-10
Optimization Parameter Dependencies 31-11
Execution Profiling for Generated Code 31-13

Optimize Generated Code by Combining Multiple for
Constructs i 31-16

Defensive Programming

32

Remove Code From Floating-Point to Integer

Conversions That Wraps Out-of-Range Values 32-2
Example Model 32-2
Generate Code Without Optimization 32-3
Generate Code with Optimization 32-4

Remove Code That Maps NaN to Integer Zero 32-5
Example Model 32-5
Generate Code Without Optimization 32-6
Generate Code with Optimization 32-7

Disable Nonfinite Checks or Inlining for Math
Functions 32-8

Data Copy Reduction

33|

Optimize Buffers in the Generated Code 33-2
Configure Buffer Optimizations 33-2
Example Model 33-2
Generate Code Without Buffer Optimization 33-3
Enable Buffer Optimization 33-5

XXXV

XxXxVvi

Minimize Computations and Storage for Intermediate

Results 33-8
About Expression Folding 33-8
Expression Folding Example 33-9
Enable Expression Folding 33-11

Declare Signals as Local Function Data 33-13

Inline Invariant Signals 33-14
Optimize Generated Code Using Inline Invariant

Signals e 33-14

Execution Speed

34

Inline Block Parameter Values 34-2
Referenced Models 34-2
Configure Loop Unrolling Threshold 34-4
Optimize Code Generated for Vector Assignments . . . 34-6
Configure Model to Optimize Code Generated for Vector
Assignments 34-6
Optimize Code Generated for Vector Assignments Using
MEMCPY + o v e v ettt et e e et et e 34-7

Generate Target Optimizations Within Algorithm
Code e 34-10

Remove Code for Blocks That Have No Effect on
Computational Results 34-12

Eliminate Dead Code Paths in Generated Code 34-15

Floating-Point Multiplication to Handle a Net Slope
Correction 34-18

Contents

Memory Usage

35

Verification

Minimize Memory Requirements During Code
Generation

Optimize Generated Code Using Boolean Data for

Logical Signals

Reduce Memory Requirements for Signals

Reuse Memory Allocated for Signals

Reduce Memory Usage for Boolean and State
Configuration Variables

Customize Stack Space Allocation
Optimize Generated Code Using memset Function . .
Vector Operation Optimization

Enable and Reuse Local Block Outputs in Generated
Code e
Example Model
Generate Code Without Optimization
Enable Local Block Outputs and Generate Code
Reuse Local Block Outputs and Generate Code

35-2

35-3

35-7

35-8

35-9
35-10
35-11
35-15
35-19
35-19
35-20

35-20
35-21

Simulation and Code Comparison

36

Configure Signal Data for Logging

xxxvii

xxxviii

Log Simulation Data 36-4
Run Executable and Load Data 36-6

Visualize and Compare Results 36-7

Numerical Consistency between Model and
Generated Code

37

Numerical Consistency of Model and Generated Code

Simulation Results 37-2
Numerical Consistency 37-2
Numerical Consistency in Complex Systems 37-3
Reasons for Block-Level Numerical Differences 37-5

Customization

Build Process Integration

38

Control Build Process Compiling and Linking 38-2
Cross-Compile Code Generated on Microsoft
Windows 38-4
Control Library Location and Naming During Build . 38-7
Library Control Parameters 38-7
Specify the Location of Precompiled Libraries 38-9
Control the Location of Model Reference Libraries . . . 38-10
Control the Suffix Applied to Library File Names . . . 38-11
Recompile Precompiled Libraries 38-13

Contents

Customize Post-Code-Generation Build Processing .
Build Information Object
Program a Post Code Generation Command
Define a Post Code Generation Command
Suppress Makefile Generation

Configure Generated Code with TLC
About Configuring Generated Code with TLC
Assigning Target Language Compiler Variables
Set Target Language Compiler Options

Customize Build Process with STF_make_rtw_hook
File
The STF_make_rtw_hook File
Conventions for Using the STF_make_rtw_hook File .
STF_make_rtw_hook.m Function Prototype and
Arguments
Applications for STF_make_rtw_hook.m
Control Code Regeneration Using
STF_make_rtw_hook.m
Use STF_make_rtw_hook.m for Your Build Procedure

Customize Build Process with sl_customization.m . .
The sl_customization.m File
Register Build Process Hook Functions Using

sl _customization.m,
Variables Available for sl_customization.m Hook

Functions
Example Build Process Customization Using

sl _customization.m

Replace the STF_rtw_info_hook Mechanism
Customize Build to Use Shared Utility Code

Modify Template Makefiles to Support Shared
Utilitieso

38-14
38-15
38-15
38-16
38-17
38-19
38-19
38-19
38-20

38-21
38-21
38-21

38-22
38-25

38-26
38-27

38-28
38-28

38-30

38-30

38-31

38-33

38-34

38-34

XxXXix

x1

Contents

Run-Time Data Interface Extensions

39

Customize an ASAP2 File
About ASAP2 File Customization
ASAP?2 File Structure on the MATLAB Path
Customize the Contents of the ASAP2 File
ASAP2 Templates
Customize Computation Method Names
Suppress Computation Methods for FIX_AXIS

Create a Transport Layer for External

Communication

About Creating a Transport Layer for External
Communicationc..u.....

Design of External Mode
External Mode Communications Overview
External Mode Source Files
Implement a Custom Transport Layer

39-2
39-2
39-2
39-3
39-4
39-6
39-7

Custom Target Development

40

About Embedded Target Development
Custom Targets
Types of Targets
Recommended Features for Embedded Targets

Sample Custom Targets

Target Development Mechanics
Folder and File Naming Conventions
Components of a Custom Target
Key Folders Under Target Root (mytarget)
Key Files in Target Folder (mytarget/mytarget)
Additional Files for Externally Developed Targets . . .
Target Development and the Build Process

40-2
40-2
40-2
40-4

40-8

40-10
40-10
40-11
40-15
40-18
40-21
40-22

Customize System Target Files
Control Code Generation With the System Target File
System Target File Naming and Location Conventions
System Target File Structure
Define and Display Custom Target Options
Tips and Techniques for Customizing Your STF
Create a Custom Target Configuration

Customize Template Makefiles
Template Makefiles and Tokens
Invoke the make Utility
Structure of the Template Makefile
Customize and Create Template Makefiles

Support Optional Features
Custom Target Optional Features
Support Toolchain Approach with Custom Target . . .
Support Model Referencing
Support Compiler Optimization Level Control
Support C Function Prototype Control
Support C++ Class Interface Control
Support Concurrent Execution of Multiple Tasks

Interface to Development Tools
About Interfacing to Development Tools
Makefile Approach
Interface to an Integrated Development Environment

Device Drivers and Target Preferences
Integrate Device Drivers
Use Target Preferences

xli

Model Architecture and Design

Modeling

* “Configure a Model for Code Generation” on page 1-2
+ “Supported Products and Block Usage” on page 1-4

* “Modeling Semantic Considerations” on page 1-26

1 Modeling

Configure a Model for Code Generation

Model configuration parameters determine the method for generating the code and the
resulting format.

1 Open rtwdemo_throttlecntrl and save a copy as throttlecntrl in a writable
location on your MATLAB path.

Note: This model uses Stateflow® software.

2 Open the Configuration Parameters dialog box Solver pane. To generate code for a
model, you must configure the model to use a fixed-step solver. For this example, set
the parameters as noted in the following table.

Parameter Setting Effect on Generated Code
Type Fixed-step Maintains a constant
(fixed) step size, which
is required for code

generation
Solver discrete (no Applies a fixed-step
continuous states) integration technique

for computing the state
derivative of the model

Fixed-step size .001 Sets the base rate; must
be the lowest common
multiple of all rates in the
system

Solver options

Type: |Fixed-step - | Solver: |discrete {no continuous states) -

Fixed-step size (fundamental sample time): 001

3 Open the Code Generation pane and make sure that System target file is set to
grt.tlc.

1-2

Configure a Model for Code Generation

Note: The GRT (Generic Real-Time Target) configuration requires a fixed-step
solver. However, the rsim.tlc system target file supports variable step code
generation.

The system target file (STF) defines a target, which is an environment for generating
and building code for execution on a certain hardware or operating system platform.
For example, one property of a target is code format. The grt configuration requires a
fixed step solver and the rsim.tlc supports variable step code generation.

Open the Code Generation > Custom Code pane, and under Include list of
additional, select Include directories. In the Include directories text field,
enter:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

This directory includes files that are required to build an executable for the model.

Apply your changes and close the dialog box.

1 Modeling

Supported Products and Block Usage

In this section...

“Related Products” on page 1-4

“Simulink Built-In Blocks That Support Code Generation” on page 1-6

“Simulink Block Data Type Support Table” on page 1-25

“Block Set Support for Code Generation” on page 1-25

Related Products

The following table summarizes MathWorks® products that extend and complement
Simulink® Coder™ software. For information about these and other MathWorks

products, see wvw . mathworks.com.

Product

Extends Code Generation Capabilities for ...

Aerospace Blockset™

Aircraft, spacecraft, rocket, propulsion systems,
and unmanned airborne vehicles

Communications System Toolbox™

Physical layer of communication systems

Computer Vision System Toolbox™

Video processing, image processing, and
computer vision systems

Control System Toolbox™

Linear control systems

DSP System Toolbox™

Signal processing systems

Embedded Coder®

Embedded systems, on-target rapid prototyping
boards, microprocessors in mass production, and
real-time simulators

Fixed-Point Designer™

Fixed-point systems

Fuzzy Logic Toolbox™

System designs based on fuzzy logic

Model-Based Calibration Toolbox™

Developing processes for systematically
identifying optimal balance of engine
performance, emissions, and fuel economy,
and reusing statistical models for control
design, hardware-in-the-loop (HIL) testing, or
powertrain simulation

1-4

http://www.mathworks.com

Supported Products and Block Usage

Product

Extends Code Generation Capabilities for ...

Model Predictive Control Toolbox™

Controllers that optimize performance of multi-
input and multi-output systems that are subject
to input and output constraints

Neural Network Toolbox™

Neural networks

Simulink Desktop Real-Time™

Rapid prototyping or hardware-in-the-loop
(HIL) simulation of control system and signal
processing algorithms

SimDriveline™ Driveline (drivetrain) systems

SimElectronics® Electronic and electromechanical systems

SimHydraulics® Hydraulic power and control systems

SimMechanics™ Three-dimensional mechanical systems

SimPowerSystems™ Systems that generate, transmit, distribute, and
consume electrical power

Simscape™ Systems spanning mechanical, electrical,

hydraulic, and other physical domains as
physical networks

Simulink 3D Animation™

Systems with 3D visualizations

Simulink Design Optimization™

Systems requiring maximum overall system
performance

Simulink Real-Time™

Rapid control prototyping, hardware-in-the-loop
(HIL) simulation, and other real-time testing
applications

Simulink Report Generator™

Automatically generating project documentation
in a standard format

Simulink Verification and Validation™

Applications requiring automated requirements
tracing, model standards compliance checking,
and test harness generation

Stateflow

State machines and flow charts

1 Modeling

Product

Extends Code Generation Capabilities for ...

System Identification Toolbox™ Systems constructed from measured input-

output data

Support exceptions:
* Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

* Nonlinear ARX models that contain custom
regressors

* neuralnet nonlinearities

+ customnet nonlinearities

Vehicle Network Toolbox™ CAN blocks for Accelerator and Rapid

Accelerator simulations and code deployment on

Windows®

Simulink Built-In Blocks That Support Code Generation

The following tables summarize Simulink Coder and Embedded Coder support

for Simulink blocks. There is a table for each block library. For more detail,
including data types each block supports, in the MATLAB® Command Window, type
showblockdatatypetable, or consult the block reference pages.

1-6

Additional Math and Discrete: Additional Discrete
Additional Math and Discrete: Increment/Decrement
Continuous

Discontinuities

Discrete

Logic and Bit Operations

Lookup Tables

Math Operations

Model Verification

Model-Wide Utilities

Ports & Subsystems

Supported Products and Block Usage

Signal Attributes
Signal Routing
Sinks

Sources
User-Defined

1-7

1 Modeling

Additional Math and Discrete: Additional Discrete

Block

Support Notes

Fixed-Point State-Space

The Simulink Coder software does not explicitly
group primitive blocks that constitute a nonatomic
masked subsystem block in the generated code.
This flexibility allows for more efficient code
generation. In certain cases, you can achieve
grouping by configuring the masked subsystem
block to execute as an atomic unit by selecting the
Treat as atomic unit option.

Transfer Fcn Direct Form 11

Transfer Fcn Direct Form 11 Time
Varying

Unit Delay Enabled

Unit Delay Enabled External IC

Unit Delay Enabled Resettable

Unit Delay Enabled Resettable
External IC

Unit Delay External IC

Unit Delay Resettable

Unit Delay Resettable External IC

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled
Resettable

Unit Delay With Preview Enabled
Resettable External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable
External RV

* The Simulink Coder software does not explicitly
group primitive blocks that constitute a
nonatomic masked subsystem block in the
generated code. This flexibility allows for more
efficient code generation. In certain cases, you
can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

* Generated code might rely on memcpy or
memset (string.h).

1-8

Supported Products and Block Usage

Additional Math and Discrete: Increment/Decrement

Block Support Notes
Decrement Real World The Simulink Coder software does not explicitly group primitive
Tee e Sl blocks that constitute a nona.to.n.nc masked subsystem. b'lock in
Integer the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.
Decrement Time To Zero |Supports code generation.
Decrement To Zero The Simulink Coder software does not explicitly group primitive
I ——— blocks that constitute a nona.to.n.lic masked subsystem. b.lock in
the generated code. This flexibility allows for more efficient code
Increment Stored generation. In certain cases, you can achieve grouping by configuring
Integer the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.
Continuous
Block Support Notes
Derivative Not recommended for production-quality code. Relates to resource
Integrator limits and restrictions on speed and memory often found in

Integrator Limited

PID Controller

PID Controller (2DOF)

Second-Order Integrator

Second-Order Integrator
Limited

State-Space

Transfer Fcn

Transport Delay

Variable Time Delay

Variable Transport
Delay

embedded systems. The code generated can contain dynamic
allocation and freeing of memory, recursion, additional memory
overhead, and widely-varying execution times. While the code

is functionally valid and generally acceptable in resource-rich
environments, smaller embedded targets often cannot support such
code.

In general, consider using the Simulink Model Discretizer to map
continuous blocks into discrete equivalents that support production
code generation. To start the Model Discretizer, select Analysis

> Control Design > Model Discretizer. One exception is the
Second-Order Integrator block because, for this block, the Model
Discretizer produces an approximate discretization.

1 Modeling

Block Support Notes

Zero-Pole

Discontinuities

Block Support Notes

Backlash Supports code generation.

Coulomb and Viscous
Friction

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Dead Zone

Supports code generation.

Dead Zone Dynamic

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Hit Crossing

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Quantizer

Supports code generation.

Rate Limiter

Cannot use inside a triggered subsystem hierarchy.

Rate Limiter Dynamic

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

1-10

Supported Products and Block Usage

Block Support Notes
Relay Support code generation.
Saturation

Saturation Dynamic

Wrap To Zero

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Discrete

Block Support Notes

Delay Supports code generation.

Difference + The Simulink Coder software does not explicitly group primitive

blocks that constitute a nonatomic masked subsystem block

in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

* Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Discrete Derivative

* Generated code might rely on memcpy or memset (string.h).

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

Discrete Filter

Discrete FIR Filter

Support code generation.

PID Controller

PID Controller (2DOF)

* Generated code might rely on memcpy or memset (string.h).

1-11

1 Modeling

Block

Support Notes

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

Discrete State-Space

Discrete Transfer Fcn

Discrete Zero-Pole

Generated code might rely on memcpy or memset (string.h).

Discrete-Time
Integrator

Depends on absolute time when used inside a triggered subsystem
hierarchy.

First-Order Hold

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Memory

Tapped Delay

Support code generation.

Transfer Fcn First
Order

Transfer Fcn Lead or
Lag

Transfer Fcn Real Zero

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Unit Delay

Generated code might rely on memcpy or memset (string.h).

Zero-Order Hold

Supports code generation.

Logic and Bit Operations

Block Support Notes
Bit Clear Support code generation.
Bit Set

Bitwise Operator

1-12

Supported Products and Block Usage

Block

Support Notes

Combinatorial Logic

Compare to Constant

Compare to Zero

Detect Change

Detect Decrease

Detect Fall Negative

Detect Fall
Nonpositive

Detect Increase

Detect Rise
Nonnegative

Detect Rise Positive

Generated code might rely on memcpy or memset (string.h).

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

Support code generation.

Lookup Tables
Block Support Notes
Cosine The Simulink Coder software does not explicitly group primitive

blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit check box.

Direct Lookup Table
(n-D)

Interpolation Using
Prelookup

Support code generation.

1-13

1 Modeling

Block

Support Notes

1-D Lookup Table

2-D Lookup Table

n-D Lookup Table

Lookup Table Dynamic

Prelookup

Sine

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Math Operations

Block Support Notes
Abs Support code generation.
Add

Algebraic Constraint

Ignored during code generation.

Assignment

Bias

Complex to Magnitude-
Angle

Complex to Real-Imag

Divide

Dot Product

Find Nonzero Elements

Gain

Magnitude-Angle to
Complex

Math Function (10"u)

Math Function (conj)

1-14

Support code generation.

Supported Products and Block Usage

Block

Support Notes

Math Function (exp)

Math Function (hermitian)

Math Function (hypot)

Math Function (log)

Math Function (logl0)

Math Function
(magnitude”2)

Math Function (mod)

Math Function (pow)

Math Function (reciprocal)

Math Function (rem)

Math Function (square)

Math Function (transpose)

Matrix Concatenate

MinMax

MinMax Running
Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Reciprocal Sqrt

Reshape

Rounding Function

Sign

Signed Sqrt

1-15

1 Modeling

Block

Support Notes

Sine Wave Function

* Does not refer to absolute time when configured for sample-
based operation. Depends on absolute time when in time-based
operation.

* Depends on absolute time when used inside a triggered
subsystem hierarchy.

Slider Gain

Sqgrt

Squeeze

Subtract

Sum

Sum of Elements

Support code generation.

Trigonometric Function

Functions asinh, acosh, and atanh are not supported by all
compilers. If you use a compiler that does not support those
functions, the software issues a warning for the block and the
generated code fails to link.

Unary Minus

Vector Concatenate

Weighted Sample Time
Math

Support code generation.

Model Verification

Block

Support Notes

Assertion

Supports code generation.

Check Discrete
Gradient

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

1-16

Supported Products and Block Usage

Block Support Notes

Check Dynamic Gap Support code generation.

Check Dynamic Lower

Bound

Check Dynamic Range

Check Dynamic Upper

Bound

Check Input Resolution |Not recommended for production code. Relates to resource limits and

Check Static Gap restrictions on speed and memory often found in embedded systems.
- Generated code can contain dynamic allocation and freeing of

Check Static Lower memory, recursion, additional memory overhead, and widely-varying

Bound execution times. While the code is functionally valid and generally

Check Static Range acceptable in resource-rich environments, smaller embedded targets
- often cannot support such code. Usually, blocks evolve toward being

ggﬁﬁg Drzitde Lyeer suitable for production code. Thus, blocks suitable for production

code remain suitable.

Model-Wide Utilities

Block

Support Notes

Block Support Table

Ignored during code generation.

DocBlock

Uses the template symbol you specify for the Embedded Coder
Flag block parameter to add comments to generated code. Requires
an Embedded Coder license. For more information, see “Use a
Simulink DocBlock to Add a Comment”.

Model Info

Timed-Based
Linearization

Trigger-Based
Linearization

Ignored during code generation.

Ports & Subsystems

Block

Support Notes

Atomic Subsystem

CodeReuse Subsystem

Support code generation.

1-17

1 Modeling

Block

Support Notes

Configurable Subsystem

Enable

Enabled Subsystem

Enabled and Triggered
Subsystem

For Each

For Each Subsystem

For Ilterator Subsystem

Function-Call
Generator

Function-Call Split

Function-Call
Subsystem

(b

IT Action Subsystem

Model

Subsystem

Switch Case

Switch Case Action
Subsystem

Triggered Subsystem

While lterator
Subsystem

Signal Attributes

Block

Support Notes

Bus to Vector

Data Type Conversion

Data Type Conversion
Inherited

1-18

Support code generation.

Supported Products and Block Usage

Block

Support Notes

Data Type Duplicate

Data Type Propagation

Data Type Scaling
Strip

IC

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Probe

Supports code generation.

Rate Transition

* Generated code might rely on memcpy or memset (string.h).

+ Cannot use inside a triggered subsystem hierarchy.

Signal Conversion

Signal Specification

Weighted Sample Time

Width

Support code generation.

Signal Routing

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Support code generation.

1-19

1 Modeling

Block

Support Notes

Environment Controller

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

From

Goto

Goto Tag Visibility

Index Vector

Support code generation.

Manual Switch

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Merge

When multiple signals connected to a Merge block have a non-Auto
storage class, all non-Auto signals connected to that block must be
identically labeled and have the same storage class. When Merge
blocks connect directly to one another, these rules apply to all
signals connected to Merge blocks in the group.

Multiport Switch

Mux

Selector

Support code generation.

Switch

Generated code might rely on memcpy or memset (string.h).

Sinks

1-20

Supported Products and Block Usage

Block

Support Notes

Display

Floating Scope

Ignored for code generation.

Outport (Outl)

Supports code generation.

Scope

Ignored for code generation.

Stop Simulation

+ Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

* Generated code stops executing when the stop condition is true.

Terminator

Supports code generation.

To File

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

To Workspace

XY Graph

Ignored for code generation.

Sources

Block

Support Notes

Noise

Band-Limited White

Cannot use inside a triggered subsystem hierarchy.

Chirp Signal

Clock

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of

1-21

1 Modeling

Block

Support Notes

memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Constant

Supports code generation.

Counter Free-Running

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Counter Limited

* The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block
in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

* Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Digital Clock

1-22

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally

Supported Products and Block Usage

Block

Support Notes

acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Enumerated Constant

Supports code generation.

From File

From Workspace

Ignored for code generation.

Ground

Inport (In1)

Support code generation.

Pulse Generator

Cannot use inside a triggered subsystem hierarchy. Does not refer to
absolute time when configured for sample-based operation. Depends
on absolute time when in time-based operation.

Ramp

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Random Number

Supports code generation.

Repeating Sequence

+ Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

+ Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.

1-23

1 Modeling

Block Support Notes
Repeating Sequence * The Simulink Coder software does not explicitly group primitive
Interpolated blocks that constitute a nonatomic masked subsystem block

in the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

+ Cannot use inside a triggered subsystem hierarchy.

Repeating Sequence
Stair

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient code
generation. In certain cases, you can achieve grouping by configuring
the masked subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Signal Builder

Signal Generator

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Sine Wave * Depends on absolute time when used inside a triggered
subsystem hierarchy.

+ Does not refer to absolute time when configured for sample-
based operation. Depends on absolute time when in time-based
operation.

Step Not recommended for production code. Relates to resource limits and

restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

1-24

Supported Products and Block Usage

Block Support Notes
Uniform Random Number |Supports code generation.

User-Defined

Block Support Notes

Fcn Supports code generation.

Interpreted MATLAB Consider using the MATLAB Function block instead.
Function

Level-2 MATLAB S- Ignored during code generation.

Function

MATLAB Function Supports code generation.

S-Function S-functions that call into MATLAB are not supported for code

S-Function Builder generation.

Simulink Block Data Type Support Table

The Simulink Block Data Type Support table summarizes characteristics of blocks in the
Simulink and Fixed-Point Designer block libraries, including whether or not they are
recommended for use in production code generation. To view this table, in the MATLAB
Command Window, type showblockdatatypetable, or consult the block reference
pages.

Block Set Support for Code Generation
Several products that include blocks are available for you to consider for code generation.

However, before using the blocks for one of these products, consult the documentation for
that product to confirm which blocks support code generation.

1-25

1 Modeling

Modeling Semantic Considerations

1-26

In this section...

“Data Propagation” on page 1-26

“Sample Time Propagation” on page 1-28
“Latches for Subsystem Blocks” on page 1-29
“Block Execution Order” on page 1-29

“Algebraic Loops” on page 1-31

Data Propagation

The first stage of code generation is compilation of the block diagram. This stage is
analogous to that of a C or C++ program. The compiler carries out type checking and
preprocessing. Similarly, the Simulink engine verifies that input/output data types of
block ports are consistent, line widths between blocks are of expected thickness, and the
sample times of connecting blocks are consistent.

The Simulink engine propagates data from one block to the next along signal lines. The
data propagated consists of

+ Data type
* Line widths

+ Sample times

You can verify what data types a Simulink block supports by typing
showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command above.

The Simulink engine typically derives signal attributes from a source block. For example,
the Inport block's parameters dialog box specifies the signal attributes for the block.

Modeling Semantic Considerations

E! Source Block Parameters: Inl x|

—Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, ‘Latch input by delaying outside signal
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs’ prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes.

Main Signal Attributes I
Minimum: Maxdmum:

I [0

Data type: I double LI = |

™ Lock output data type setting against changes by the fixed-point tools

Port dimensions (-1 for inherited):

|3

Variable-size signal: IInherit ;I

Sample time {-1 for inherited):

jo.o1
Signal type: Icomplex ;I
Sampling mode: Iaub: |

J- [0]4 I Cancel | Help

In this example, the Inport block has a port width of 3, a sample time of .01 seconds, the

data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the Inport

block through a simple block diagram.

double (S (30 5 double (2103

Q)
(111 .
Gain

St

In this example, the Gain and Outport blocks inherit the attributes specified for the

Inport block.

1-27

1 Modeling

1-28

Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can sometimes lead
to unexpected and unintended sample time assignments. Since a block may specify an
inherited sample time, information available at the outset is often insufficient to compile
a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample times to
those blocks that have inherited sample times but that have not yet been assigned a
sample time. Thus, the engine continues to fill in the blanks (the unknown sample times)
until sample times have been assigned to as many blocks as possible. Blocks that still do
not have a sample time are assigned a default sample time.

For a completely deterministic model (one where no sample times are set using the
above rules), you should explicitly specify the sample times of your source blocks. Source
blocks include root inport blocks and blocks without input ports. You do not have to set
subsystem input port sample times. You might want to do so, however, when creating
modular systems.

An unconnected input implicitly connects to ground. For ground blocks and ground
connections, the sample time is always constant (inf).

All blocks have an inherited sample time (T = -1). They are assigned a sample time of (T
- T})/50.

Blocks Whose Outputs Have Constant Values

When you display sample time colors, by default, Constant blocks appear magenta

in color to indicate that the block outputs have constant values during simulation.
Downstream blocks whose output values are also constant during simulation, such as
Gain blocks, similarly appear magenta if they use an inherited sample time. The code
generated for these blocks depends in part on the tunability of the block parameters.

If you set Configuration Parameters > Optimization > Signals and Parameters >
Default parameter behavior to Inlined, the block parameters are not tunable in the
generated code. Because the block outputs are constant, the code generator eliminates
the block code due to constant folding. If the code generator cannot fold the code, or

if you select settings to disable constant folding, the block code appears in the model
initialization function. The generated code is more efficient because it does not compute
the outputs of these blocks during execution.

Modeling Semantic Considerations

However, if you configure a block or model so that the block parameters appear in
the generated code as tunable variables, the code generator represents the blocks in a
different way. Block parameters are tunable if, for example:

* You set Default parameter behavior to Tunable. By default, numeric block
parameters appear as tunable fields of a global parameter structure.

* You use a tunable parameter, such as a Simul ink.Parameter object that uses a
storage class other than Auto, as the value of one or more numeric block parameters.
These block parameters are tunable regardless of the setting that you choose for
Default parameter behavior.

If a block parameter is tunable, the generated code must compute the block outputs
during execution. Therefore, the block code appears in the model step function. If the
model uses multiple discrete rates, the block code appears in the output function for the
fastest downstream rate that uses the block outputs.

Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call subsystem, you
can use latch options to preserve input values while the subsystem executes. The Inport
block latch options include:

For Use

Triggered subsystems Latch input by delaying outside signal

Function-call Latch input for feedback signals of function-call
subsystems subsystem outputs

When you use Latch input for feedback signals of function-call subsystem
outputs for a function-call subsystem, the Simulink Coder code generator

* Preserves latches in generated code regardless of optimizations that might be set

+ Places the code for latches at the start of a subsystem's output/update function

For more information on these options, see the description of the Inport block in the
Simulink documentation.

Block Execution Order

Once the Simulink engine compiles the block diagram, it creates a model . rtw file
(analogous to an object file generated from a C or C++ file). The model . rtw file contains

1-29

1 Modeling

the connection information of the model, as well as the signal attributes. Thus, the
timing engine in can determine when blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in handwritten code)
in a model. For example, in the next figure the disconnected_trigger model on the
left has its trigger port connected to ground, which can lead to the blocks inheriting a
constant sample time. Calling the trigger function, (), directly from user code does not
work. Instead, you should use a function-call generator to specify the rate at which F()
should be executed, as shown in the connected_trigger model on the right.

In1

3 fO
Y o - Connected
: Disconnected Function-call Trigger
: Trigger Generator
v v
fo f0
CDO—>{in1 outt——CD CDO—>|in1 outt——CD
Out1 In1 Out1
Triggered Triggered
Subsystem Subsystem

1-30

Instead of the function-call generator, you could use another block that can drive the
trigger port. Then, you should call the model's main entry point to execute the trigger
function.

For multirate models, a common use of the Simulink Coder product is to build individual
models separately and then manually code the I/0 between the models. This approach
places the burden of data consistency between models on the developer of the models.
Another approach is to let the Simulink and Simulink Coder products maintain data
consistency between rates and generate multirate code for use in a multitasking
environment. The Simulink Rate Transition block is able to interface both periodic

and asynchronous signals. For a description of the Simulink Coder libraries, see
“Asynchronous Events” on page 4-2. For more information on multirate code

generation, see “Modeling for Multitasking Execution” on page 3-11.

Modeling Semantic Considerations

Algebraic Loops

Algebraic loops are circular dependencies between variables. This prevents the
straightforward direct computation of their values. For example, in the case of a system
of equations

c X=y +2

. y = =X

the values of X and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for X and y (in an intelligent
manner, for example, using gradient based search) or “solve” the system of equations. In
the previous example, solving the system into an explicit form leads to

c 2X = 2
-y = -x
- x=1
-y =-1

An algebraic loop exists whenever the output of a block having direct feedthrough (such
as Gain, Sum, Product, and Transfer Fcn) is fed back as an input to the same block. The
Simulink engine is often able to solve models that contain algebraic loops, such as the
next diagram.

"\
Sine \Wave
. : — (D
o ot 1
Constant g

The Simulink Coder software does not produce code that solves algebraic loops. This
restriction includes models that use Algebraic Constraint blocks in feedback paths.

1-31

1 Modeling

1-32

However, the Simulink engine can often eliminate algebraic loops that arise, by grouping
equations in certain ways in models that contain them. It does this by separating the
update and output functions to avoid circular dependencies. See “Algebraic Loops” in the
Simulink documentation for details.

Algebraic Loops in Triggered Subsystems

While the Simulink engine can minimize algebraic loops involving atomic and enabled
subsystems, a special consideration applies to some triggered subsystems. An example
for which code can be generated is shown in the following model and triggered
subsystem.

i (=
|
Pulse
Generator Scope
r
F
1 —w Ini Owrt1 e 1]
L Ot
Constant Triggered
Subsystem

The default Simulink behavior is to combine output and update methods for the
subsystem, which creates an apparent algebraic loop, even though the Unit Delay block
in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the output and
update methods of triggered and enabled-triggered subsystems when feasible. If you
want the Simulink Coder code generator to take advantage of this feature, select the
Minimize algebraic loop occurrences check box in the Subsystem Parameters dialog
box. Select this option to avoid algebraic loop warnings in triggered subsystems involved
in loops.

Note: If you check this box, the generated code for the subsystem might contain split
output and update methods, even if the subsystem is not actually involved in a loop. Also,
if a direct feedthrough block (such as a Gain block) is connected to the inport in the above

Modeling Semantic Considerations

triggered subsystem, the Simulink engine cannot solve the problem, and the Simulink
Coder software is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on the Model
Referencing pane of the Configuration Parameters dialog box. Selecting it enables the

Simulink Coder software to generate code for models containing Model blocks that are
involved in algebraic loops.

1-33

Timers

+ “Absolute and Elapsed Time Computation” on page 2-2
* “Access Timers Programmatically” on page 2-5
+ “Generate Code for an Elapsed Time Counter” on page 2-9

* “Absolute Time Limitations” on page 2-12

2 Timers

Absolute and Elapsed Time Computation

In this section...

“About Timers” on page 2-2
“Timers for Periodic and Asynchronous Tasks” on page 2-3
“Allocation of Timers” on page 2-3

“Integer Timers in Generated Code” on page 2-3

“Elapsed Time Counters in Triggered Subsystems” on page 2-4

About Timers

Certain blocks require the value of either absolute time (that is, the time from the start
of program execution to the present time) or elapsed time (for example, the time elapsed
between two trigger events). Targets that support the real-time model (rtModel) data
structure provide efficient time computation services to blocks that request absolute or
elapsed time. Absolute and elapsed timer features include

* Timers are implemented as unsigned integers in generated code.

* In multirate models, at most one timer is allocated per rate. If no blocks executing
at a given rate require a timer, a timer is not allocated to that rate. This minimizes
memory allocated for timers and significantly reduces overhead involved in
maintaining timers.

+ Allocation of elapsed time counters for use of blocks within triggered subsystems is
minimized, further reducing memory usage and overhead.

* The Simulink Coder product provides S-function and TLC APIs that let your S-
functions access timers, in both simulation and code generation.

* The word size of the timers is determined by a user-specified maximum counter value,
Application lifespan (days). If you specify this value, timers will not overflow.
For more information, see “Control Memory Allocation for Time Counters” on page
31-10.

See “Absolute Time Limitations” on page 2-12 for more information about absolute
time and the restrictions that it imposes.

Absolute and Elapsed Time Computation

Timers for Periodic and Asynchronous Tasks

This chapter discusses timing services provided for blocks executing within periodic tasks
(that is, tasks running at the model's base rate or subrates).

The Simulink Coder product also provides timer support for blocks whose execution is
asynchronous with respect to the periodic timing source of the model. See the following
topics:

* “Use Timers in Asynchronous Tasks” on page 4-24

+ “Create a Customized Asynchronous Library” on page 4-26

Allocation of Timers

If you create or maintain an S-Function block that requires absolute or elapsed time
data, it must register the requirement (see “Access Timers Programmatically” on page
2-5). In multirate models, timers are allocated on a per-rate basis. For example,
consider a model structured as follows:

* There are three rates, A, B, and C, in the model.
* No blocks running at rate B require absolute or elapsed time.

* Two blocks running at rate C register a requirement for absolute time.

* One block running at rate A registers a requirement for absolute time.

In this case, two timers are generated, running at rates A and C respectively. The timing
engine updates the timers as the tasks associated with rates A and C execute. Blocks
executing at rates A and C obtain time data from the timers associated with rates A and

C.

Integer Timers in Generated Code

In the generated code, timers for absolute and elapsed time are implemented as unsigned
integers. The default size is 64 bits. This is the amount of memory allocated for a timer

if you specify a value of inf for the Application lifespan (days) parameter. For an
application with a sample rate of 1000 MHz, a 64-bit counter will not overflow for more
than 500 years. See “Use Timers in Asynchronous Tasks” on page 4-24 and “Control
Memory Allocation for Time Counters” on page 31-10 for more information.

2-3

2 Timers

Elapsed Time Counters in Triggered Subsystems

Some blocks, such as the Discrete-Time Integrator block, perform computations requiring
the elapsed time (delta T) since the previous block execution. Blocks requiring elapsed
time data must register the requirement (see “Access Timers Programmatically” on page
2-5). A triggered subsystem then allocates and maintains a single elapsed time

counter if required. This timer functions at the subsystem level, not at the individual
block level. The timer is generated if the triggered subsystem (or a unconditionally
executed subsystem within the triggered subsystem) contains one or more blocks
requiring elapsed time data.

Note: If you are using simplified initialization mode, elapsed time is reset on first
execution after becoming enabled, whether or not the subsystem is configured to reset
on enable. For more information, see “Underspecified initialization detection” in the
Simulink documentation.

Access Timers Programmatically

Access Timers Programmatically

In this section...

“About Timer APIs” on page 2-5

“C API for S-Functions” on page 2-5

“TLC API for Code Generation” on page 2-7

About Timer APIs

This topic describes APIs that let your S-functions take advantage of the efficiencies
offered by absolute and elapsed timers. SimStruct macros are provided for use in
simulation, and TLC functions are provided for inlined code generation. Note that

* To generate and use the new timers as described above, your S-
functions must register the need to use an absolute or elapsed timer
by calling ssSetNeedAbsoluteTime or ssSetNeedElapseTime in
mdlInitializeSampleTime.

+ Existing S-functions that read absolute time but do not register by using these macros
continue to operate as expected, but generate less efficient code.

C API for S-Functions

The SimStruct macros described in this topic provide access to absolute and elapsed
timers for S-functions during simulation.

In the functions below, the SImStruct *S argument is a pointer to the simstruct of
the calling S-function.

* void ssSetNeedAbsoluteTime(SimStruct *S, boolean b):if b is TRUE,
registers that the calling S-function requires absolute time data, and allocates an
absolute time counter for the rate at which the S-function executes (if such a counter
has not already been allocated).

+ int ssGetNeedAbsoluteTime(SimStruct *S): returns 1 if the S-function has
registered that it requires absolute time.

+ double ssGetTaskTime(SimStruct *S, tid): read absolute time for a given
task with task identifier tid. ssGetTaskTime operates transparently, regardless of
whether or not you use the new timer features. ssGetTaskTime is documented in the
SimStruct Functions chapter of the Simulink documentation.

2-5

2 Timers

+ void ssSetNeedElapseTime(SimStruct *S, boolean b):if bis TRUE,
registers that the calling S-function requires elapsed time data, and allocates an
elapsed time counter for the triggered subsystem in which the S-function executes (if
such a counter has not already been allocated). See also “Elapsed Time Counters in
Triggered Subsystems” on page 2-4.

* int ssGetNeedElapseTime(SimStruct *S): returns 1 if the S-function has
registered that it requires elapsed time.

+ void ssGetElapseTime(SimStruct *S, (double *)elapseTime): returns, to
the location pointed to by elapseTime, the value (as a double) of the elapsed time
counter associated with the S-function.

+ void ssGetElapseTimeCounterDtype(SimStruct *S, (int *)dtype):
returns the data type of the elapsed time counter associated with the S-function
to the location pointed to by dtype. This function is intended for use with the
ssGetElapseTimeCounter function (see below).

* void ssGetElapseResolution(SimStruct *S, (double *)resolution):
returns the resolution (that is, the sample time) of the elapsed time counter
associated with the S-function to the location pointed to by resolution. This
function is intended for use with the ssGetElapseTimeCounter function (see
below).

+ void ssGetElapseTimeCounter(SimStruct *S, (void *)elapseTime): This
function is provided for the use of blocks that require the elapsed time values for
fixed-point computations. ssGetElapseTimeCounter returns, to the location pointed
to by elapseTime, the integer value of the elapsed time counter associated with the
S-function. If the counter size is 64 bits, the value is returned as an array of two 32-
bit words, with the low-order word stored at the lower address.

To determine how to access the returned counter value, obtain the data type of the
counter by calling ssGetElapseTimeCounterDtype, as in the following code:

int *y_dtype;
ssGetElapseTimeCounterDtype(S, y_dtype);

switch(*y_dtype) {
case SS_DOUBLE_UINT32:

{
uint32_T dataPtr[2];
ssGetElapseTimeCounter (S, dataPtr);
}
break;

case SS_UINT32:

2-6

Access Timers Programmatically

{
uint32_T dataPtr[1];

ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINT16:
{
uintl6_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINTS:
{
uint8 T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_DOUBLE:
{
real_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
default:
ssSetErrorStatus(S, "Invalid data type for elaspe time
counter™);
break;

}

If you want to use the actual elapsed time, issue a call to the ssGetElapseTime
function to access the elapsed time directly. You do not need to get the counter value
and then calculate the elapsed time.

double *y_elapseTime;

ssGetElapseTime(S, elapseTime)

TLC API for Code Generation

The following TLC functions support elapsed time counters in generated code when you
inline S-functions by writing TLC scripts for them.

2 Timers

2-8

LibGetTaskTimeFromTID(block): Generates code to read the absolute time for the
task in which block executes.

LibGetTaskTimeFromTID is documented with other sample time functions in
the TLC Function Library Reference pages of the Target Language Compiler
documentation.

Note Do not use LibGetT for this purpose. LibGetT always reads the base rate (tid
0) timer. If LibGetT is called for a block executing at a subrate, the wrong timer is
read, causing serious errors.

LibGetElapseTime(system): Generates code to read the elapsed time counter for
systenm. (system is the parent system of the calling block.) See “Generate Code for
an Elapsed Time Counter” on page 2-9 for an example of code generated by this
function.

LibGetElapseTimeCounter(system): Generates code to read the integer

value of the elapsed time counter for system. (system is the parent system

of the calling block.) This function should be used in conjunction with
LibGetElapseTimeCounterDtypeld and LibGetElapseTimeResolution. (See
the discussion of ssGetElapseTimeCounter above.)

LibGetElapseTimeCounterDtypeld(system): Generates code that returns the
data type of the elapsed time counter for system. (system is the parent system of the
calling block.)

LibGetElapseTimeResolution(system): Generates code that returns the
resolution of the elapsed time counter for system. (system is the parent system of
the calling block.)

Generate Code for an Elapsed Time Counter

Generate Code for an Elapsed Time Counter

This example shows a model illustrating how an elapsed time counter is generated

and used by a Discrete-Time Integrator block within a triggered subsystem. The
following block diagrams show the model elapseTime_exp, which contains subsystem
Amplifier, which includes a Discrete-Time Integrator block.

i
:

r__
-
-

Pulse
Generator

INPUT OUTPUT

Constant

Amplifier

elapseTime_exp Model

Trigger

K Ts
@D > >

z-1

Dis orete-Time
Integrator

Amplifier Subsystem

A 32-bit timer for the base rate (the only rate in this model) is defined within the
rtModel structure, as follows, in model .h.

iy
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
time_T stepSize;

2-9

2 Timers

2-10

uint32_T clockTickO;
uint32_T clockTickHO;
time_T stepSizeO;
time_T tStart;
time_T tFinal;
time_T timeOfLastOutput;
void *timingData;
real_T *varNextHitTimesList;
SimTimeStep simTimeStep;
boolean_T stopRequestedFlag;
time_T *sampleTimes;
time_T *offsetTimes;
int_T *sampleTimeTaskIDPtr;
int_T *sampleHits;
int_T *perTaskSampleHits;
time_T *t;
time_T sampleTimesArray[1];
time_T offsetTimesArray[1];
int_T sampleTimeTasklDArray[1];
int_T sampleHitArray[1];
int_T perTaskSampleHitsArray[1];
time_T tArray[1];

} Timing;

Had the target been ERT instead of GRT, the Timing structure would have been pruned
to contain only the data required by the model, as follows:

/* Real-time Model Data Structure */ (for ERTI)
struct _RT_MODEL_elapseTime_exp_Tag {

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickO;
} Timing;
}:

Storage for the previous-time value of the Amplifier subsystem (Amplifier_PREV_T)
is allocated in the D_Work(states) structure in model .h.

typedef struct D_Work_elapseTime_exp_tag {
real_T DiscreteTimelntegrator_DSTATE; /* "<S1>/Discrete-Time

Generate Code for an Elapsed Time Counter

Integrator® */
int32_T clockTickCounter; /* "<Root>/Pulse Generator" */
uint32_T Amplifier_PREV_T; /* "<Root>/Amplifier® */

} D_Work_elapseTime_exp;

These structures are declared in model .c:

/* Block states (auto storage) */
D_Work_elapseTime_exp elapseTime_exp_DWork;

/* Real-time model */
rtModel_elapseTime_exp elapseTime_exp_M_;
rtModel_elapseTime_exp *elapseTime_exp_M = &elapseTime_exp_M_;

The elapsed time computation is performed as follows within the model_step function:

/* Output and update for trigger system: "<Root>/Amplifier® */
uint32_T rt_currentTime =
(uint32_T)elapseTime_exp_M->Timing.clockTickO);
uint32_T rt_elapseTime = rt_currentTime -
elapseTime_exp_DWork.Amplifier_PREV_T;
elapseTime_exp_DWork.Amplifier_PREV_T = rt_currentTime;

As shown above, the elapsed time is maintained as a state of the triggered subsystem.
The Discrete-Time Integrator block finally performs its output and update computations
using the elapsed time.

/* Discretelntegrator: "<S1>/Discrete-Time Integrator® */
OUTPUT = elapseTime_exp_DWork.DiscreteTimelntegrator_DSTATE;

/* Update for Discretelntegrator: "<Sl1>/Discrete-Time Integrator®*/
elapseTime_exp_DWork.DiscreteTimelntegrator DSTATE += 0.3 *
(real_T)rt_elapseTime * 1.5 ;

Because the triggered subsystem maintains the elapsed time, the TLC implementation
of the Discrete-Time Integrator block needs only a single call to LibGetElapseTime to
access the elapsed time value.

2-11

2 Timers

Absolute Time Limitations

2-12

Absolute time is the time that has elapsed from the beginning of program execution to
the present time, as distinct from elapsed time, the interval between two events. See
“Absolute and Elapsed Time Computation” on page 2-2 for more information.

When you design an application that is intended to run indefinitely, you must take care
when logging time values, or using charts or blocks that depend on absolute time. If the
value of time reaches the largest value that can be represented by the data type used
by the timer to store time, the timer overflows and the logged time or block output is
incorrect.

If your target uses rtModel, you can avoid timer overflow by specifying a value for the
Application life span parameter. See “Integer Timers in Generated Code” on page 2-3
for more information.

The following limitations apply to absolute time:

+ If you log time values by opening the Configuration Parameters dialog box and
enabling Data Import/Export > Save to workspace > Time, your model uses
absolute time.

+ Every Stateflow chart that uses time is dependent on absolute time. The only way to
eliminate the dependency is to change the Stateflow chart to not use time.

* The following Simulink blocks depend on absolute time:

+ Backlash

+ Chirp Signal

+ Clock
Derivative
Digital Clock
Discrete-Time Integrator (only when used in triggered subsystems)
From File
From Workspace

* Pulse Generator

* Ramp

+ Rate Limiter

Absolute Time Limitations

* Repeating Sequence
+ Signal Generator
Sine Wave (only when the Sine type parameter is set to Time-based)
+ Step
+ To File
To Workspace (only when logging to StructureWithTime format)
Transport Delay
+ Variable Time Delay
+ Variable Transport Delay

In addition to the Simulink blocks above, blocks in other blocksets may depend on
absolute time. See the documentation for the blocksets that you use.

2-13

Time-Based Scheduling

* “Time-Based Scheduling and Code Generation” on page 3-2
+ “Modeling for Single-Tasking Execution” on page 3-7

* “Modeling for Multitasking Execution” on page 3-11

+ “Handle Rate Transitions” on page 3-19

+ “Configure Time-Based Scheduling” on page 3-34

3 Time-Based Schedu|ing

Time-Based Scheduling and Code Generation

3-2

In this section...

“Sample Time Considerations” on page 3-2

“Tasking Modes” on page 3-2

“Model Execution and Rate Transitions” on page 3-4
“Execution During Simulink Model Simulation” on page 3-5

“Model Execution in Real Time” on page 3-5

“Single-Tasking Versus Multitasking Operation” on page 3-6

Sample Time Considerations

Simulink models run at one or more sample times. The Simulink product provides
considerable flexibility in building multirate systems, that is, systems with more than
one sample time. However, this same flexibility also allows you to construct models for
which the code generator cannot generate real-time code for execution in a multitasking
environment. To make multirate models operate as expected in real time (that is, to give
the right answers), you sometimes must modify your model or instruct the Simulink
engine to modify the model for you. In general, the modifications involve placing Rate
Transition blocks between blocks that have unequal sample times. The following sections
discuss issues you must address to use a multirate model in a multitasking environment.
For a comprehensive discussion of sample times, including rate transitions, see “What

Is Sample Time?”, “Sample Times in Subsystems”, “Sample Times in Systems”, “Resolve
Rate Transitions”, and associated topics.

Tasking Modes

There are two execution modes for a fixed-step Simulink model: single-tasking and
multitasking. These modes are available only for fixed-step solvers. To select an
execution mode, use the Tasking mode for periodic sample times menu on the
Solver pane of the Configuration Parameters dialog box. Auto mode (the default) applies
multitasking execution for a multirate model, and otherwise selects single-tasking
execution. You can also select SingleTasking or MultiTasking execution explicitly.

Note: A model that is multirate and uses multitasking cannot reference a multirate
model that uses single-tasking.

Time-Based Scheduling and Code Generation

Execution of models in a real-time system can be done with the aid of a real-time
operating system, or it can be done on a bare-board target, where the model runs in the
context of an interrupt service routine (ISR).

The fact that a system (such as The Open Group UNIX" or Microsoft® Windows systems)
is multitasking does not imply that your program can execute in real time. This is
because the program might not preempt other processes when required.

In operating systems (such as PC-DOS) where only one process can exist at a given time,
an interrupt service routine (ISR) must perform the steps of saving the processor context,
executing the model code, collecting data, and restoring the processor context.

Other operating systems, such as POSIX-compliant ones, provide automatic context
switching and task scheduling. This simplifies the operations performed by the ISR. In
this case, the ISR simply enables the model execution task, which is normally blocked.
The next figure illustrates this difference.

3 Time-Based Schedu|ing

Real-Time Clock

Hardware
Interrupt

Interrupt Service
Routine

Save Context

Y

Execute Model

Y

Collect Data

|

Restore Context

Program execution using an
interrupt service routine
(bareboard, with no real-time
operating system). See the
grt target for an example.

Real-Time Clock

Hardware
Interrupt

Interrupt Service
Routine

semGive

Context
Switch

"

Program execution using a real-time
operating system primitive. See the
Tornado target for an example.

Model Execution and Rate Transitions

To generate code that executes as expected in real time, you (or the Simulink engine)
might need to identify and handle sample rate transitions within the model. In
multitasking mode, by default the Simulink engine flags errors during simulation if
the model contains invalid rate transitions, although you can use the Multitask rate
transition diagnostic to alter this behavior. A similar diagnostic, called Single task

Model Execution
Task

semTake

¥

Execute Model

v

Collect Data

rate transition, exists for single-tasking mode.

3-4

Time-Based Scheduling and Code Generation

To avoid raising rate transition errors, insert Rate Transition blocks between tasks. You
can request that the Simulink engine handle rate transitions automatically by inserting
hidden Rate Transition blocks. See “Automatic Rate Transition” on page 3-25 for an
explanation of this option.

To understand such problems, first consider how Simulink simulations differ from real-
time programs.

Execution During Simulink Model Simulation

Before the Simulink engine simulates a model, it orders the blocks based upon their
topological dependencies. This includes expanding virtual subsystems into the individual
blocks they contain and flattening the entire model into a single list. Once this step is
complete, each block is executed in order.

The key to this process is the ordering of blocks. A block whose output is directly
dependent on its input (that is, a block with direct feedthrough) cannot execute until the
block driving its input executes.

Some blocks set their outputs based on values acquired in a previous time step or from
initial conditions specified as a block parameter. The output of such a block is determined
by a value stored in memory, which can be updated independently of its input. During
simulation, computations are performed prior to advancing the variable corresponding to
time. This results in computations occurring instantaneously (that is, no computational
delay).

Model Execution in Real Time

A real-time program differs from a Simulink simulation in that the program must
execute the model code synchronously with real time. Every calculation results in some
computational delay. This means the sample intervals cannot be shortened or lengthened
(as they can be in a Simulink simulation), which leads to less efficient execution.

Consider the following timing figure.

3-5

3 Time-Based Schedu|ing

3-6

Time ———»

Note the processing inefficiency in the sample interval t1. That interval cannot be
compressed to increase execution speed because, by definition, sample times are clocked
in real time.

You can circumvent this potential inefficiency by using the multitasking mode. The
multitasking mode defines tasks with different priorities to execute parts of the model
code that have different sample rates.

See “Multitasking and Pseudomultitasking Modes” on page 3-11 for a description of
how this works. It is important to understand that section before proceeding here.

Single-Tasking Versus Multitasking Operation

Single-tasking programs require longer sample intervals, because all computations must
be executed within each clock period. This can result in inefficient use of available CPU
time, as shown in the previous figure.

Multitasking mode can improve the efficiency of your program if the model is large and
has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks execute

at a slower rate, multitasking can actually degrade performance. In such a model, the
overhead incurred in task switching can be greater than the time required to execute the
slower blocks. In this case, it is more efficient to execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you might need to
modify your model by adding Rate Transition blocks (or instruct the Simulink engine to
do so) to generate expected results.

For more information about the two modes of execution and examples, see “Modeling for
Single-Tasking Execution” on page 3-7 and “Modeling for Multitasking Execution”
on page 3-11.

Modeling for Single-Tasking Execution

Modeling for Single-Tasking Execution

In this section...

“Single-Tasking Mode” on page 3-7

“Build a Program for Single-Tasking Execution” on page 3-7

“Single-Tasking Execution” on page 3-8

Single-Tasking Mode

You can execute model code in a strictly single-tasking manner. While this mode is less
efficient with regard to execution speed, in certain situations, it can simplify your model.

In single-tasking mode, the base sample rate must define a time interval that is long
enough to allow the execution of all blocks within that interval.

The next figure illustrates the inefficiency inherent in single-tasking execution.

t0 t1 t2 t3 t4

A 7 N 7 N 7 N 7 N

Single-tasking system execution requires a base sample rate that is long enough to
execute one step through the entire model.

Build a Program for Single-Tasking Execution

To use single-tasking execution, select SingleTasking from the Tasking mode for
periodic sample times menu on the Solver pane of the Configuration Parameters
dialog box. If you select Auto, single-tasking is used in the following cases:

+ If your model contains one sample time

+ If your model contains a continuous and a discrete sample time and the fixed step size
is equal to the discrete sample time

3-7

3 Time-Based Schedu|ing

Single-Tasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers the operation of both SingleTasking
and MultiTasking Solver pane tasking modes.

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has been
forced into the order shown by assigning higher priorities to blocks F, E, and D. The
ordering shown is one possible valid execution ordering for this model. (See “Simulation
Phases in Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks. In a real-

time system, the execution order determines the order in which blocks execute within

a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.

OH 04 aa p—y
|n|:3 J = | [| 'ZD“ | oETs .| yin=Cxinp+Du(n) :
T "= gl y— i frm i R | xine1j=axinBuin) —'
- I @ — Out1
Sine Wave 8 Diserete Fitter R ETD i E . F
SampleTime=p.1 o Tramsition SampleTime=1 i Ee DsosteTime Discrete State-Space
i (Fastto Slow) {Slow o Fast) Integrator SampleTime=0 1
SampleTime=0,1

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.

This example considers the execution of the above model when the solver Tasking mode
is SingleTasking.

In a single-tasking system, if the Block reduction option on the Optimization pane is
on, fast-to-slow Rate Transition blocks are optimized out of the model. The default case is
shown (Block reduction on), so block B does not appear in the timing diagrams in this
section. For more information, see “Block reduction”.

Modeling for Single-Tasking Execution

The following table shows, for each block in the model, the execution order, sample time,
and whether the block has an output or update computation. Block A does not have
discrete states, and accordingly does not have an update computation.

Execution Order and Sample Times (Single-Tasking)

Blocks Sample Time Output Update
(in Execution Order) |(in Seconds)

E 0.1 Y Y

F 0.1 Y Y

D 1 Y Y

A 0.1 Y N

C 1 Y Y

Real-Time Single-Tasking Execution

The next figure shows the scheduling of computations when the generated code is
deployed in a real-time system. The generated program is shown running in real time,
under control of interrupts from a 10 Hz timer.

EL] [wuaif)
Update: [EFDC | | [EF] | EFC

Time: 0.0 0.1 oz 1.0

At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks execute their
output computations; this is followed by update computations for blocks that have states.
Within a given time interval, output and update computations are sequenced in block
execution order.

The fast blocks execute on every tick, at intervals of 0.1 second. Output computations are
followed by update computations.

3-9

3 Time-Based Schedu|ing

The system spends some portion of each time interval (labeled “wait”) idling. During
the intervals when only the fast blocks execute, a larger portion of the interval is spent
idling. This illustrates an inherent inefficiency of single-tasking mode.

Simulated Single-Tasking Execution

The next figure shows the execution of the model during the Simulink simulation loop.

b

Update: Er [ER [EA - [EFm Ty
| | y

Time: 0.0 0.1 0z 10

-

Because time is simulated, the placement of ticks represents the iterations of the
simulation loop. Blocks execute in exactly the same order as in the previous figure,
but without the constraint of a real-time clock. Therefore there is no idle time between
simulated sample periods.

3-10

Modeling for Multitasking Execution

Modeling for Multitasking Execution

In this section...

“Multitasking and Pseudomultitasking Modes” on page 3-11
“Build a Program for Multitasking Execution” on page 3-13
“Execute Multitasking Models” on page 3-13

“Multitasking Execution” on page 3-15

Multitasking and Pseudomultitasking Modes

When periodic tasks execute in a multitasking mode, by default the blocks with the
fastest sample rates are executed by the task with the highest priority, the next fastest
blocks are executed by a task with the next higher priority, and so on. Time available in
between the processing of high-priority tasks is used for processing lower priority tasks.
This results in efficient program execution.

Where tasks are asynchronous rather than periodic, there may not necessarily be

a relationship between sample rates and task priorities; the task with the highest
priority need not have the fastest sample rate. You specify asynchronous task priorities
using Async Interrupt and Task Sync blocks. You can switch the sense of what priority
numbers mean by selecting or deselecting the Solver option Higher priority value
indicates higher task priority.

In multitasking environments (that is, under a real-time operating system), you can
define separate tasks and assign them priorities. In a bare-board target (that is, no real-
time operating system present), you cannot create separate tasks. However, Simulink
Coder application modules implement what is effectively a multitasking execution
scheme using overlapped interrupts, accompanied by programmatic context switching.

This means an interrupt can occur while another interrupt is currently in progress.
When this happens, the current interrupt is preempted, the floating-point unit (FPU)
context is saved, and the higher priority interrupt executes its higher priority (that is,
faster sample rate) code. Once complete, control is returned to the preempted ISR.

The next figures illustrate how timing of tasks in multirate systems are handled by

the Simulink Coder software in multitasking, pseudomultitasking, and single-tasking
environments.

3-11

3 Time-Based Scheduling

’(‘(3 t1 t2 t3 t4
Highestfriority | I T T rate 1
l T l T l T l T l rate 2
W/ IW/! [
A l T l T rate 3
Lowest Priority &\\\\\\\\\\\\\\\\\ T
T Vertical arrows indicate sample time hits.
Dotted lines with downward pointing Dark gray areas indicate task execution.

@ arrows indicate the release of control
+ to alower priority task.

] Hashed areas indicate task preemption
N by a higher priority task.

Light gray areas indicate task execution
is pending.

. Dotted lines with upward pointing
t arrows indicate preemption by a
. higher priority task.

The next figure shows how overlapped interrupts are used to implement
pseudomultitasking. In this case, Interrupt O does not return until after Interrupts 1, 2,
and 3.

3-12

Modeling for Multitasking Execution

Interrupt O Interrupt 1 Interrupt 2 Interrupt 3
Begins : . Begins :
. - ; ! ! Interrupt 3
: Interrupt 1 ; i Ends
t0 vt Ends i t3 [
A A I A A I

Highest Priority I

A
Interrupt 2

v

Lowest Priority \\\\\\\\\\\\\\N I

| - | !
ANRUNNNNNN
= | W |

+ ' Interrupt 0
| Ends

| ? I

RRIMIIINIIIINNIININNIRNY

Build a Program for Multitasking Execution

To use multitasking execution, select Auto (the default) or MultiTasking from

the Tasking mode for periodic sample times menu on the Solver pane of the
Configuration Parameters dialog box. This menu is active only if you select Fixed-step
as the solver type. Auto mode results in a multitasking environment if your model has
two or more different sample times. A model with a continuous and a discrete sample
time runs in single-tasking mode if the fixed-step size is equal to the discrete sample
time.

Execute Multitasking Models

In cases where the continuous part of a model executes at a rate that is different from
the discrete part, or a model has blocks with different sample rates, the Simulink
engine assigns each block a task identifier (tid) to associate the block with the task that
executes at the block's sample rate.

3-13

3 Time-Based Schedu|ing

You set sample rates and their constraints on the Solver pane of the Configuration
Parameters dialog box. To generate code with the Simulink Coder software, you must

select Fixed-step for the solver type. Certain restrictions apply to the sample rates that
you can use:

* The sample rate of a block must be an integer multiple of the base (that is, the fastest)
sample period.

* When Periodic sample time constraint is unconstrained, the base sample
period is determined by the Fixed step size specified on the Solvers pane of the
Configuration parameters dialog box.

* When Periodic sample time constraint is Specified, the base rate fixed-
step size is the first element of the sample time matrix that you specify in the
companion option Sample time properties. The Solver pane from the example
model rtwdemo_mrmtbb shows an example.

— Simulation time

Start ime: |0.0 Stop time: | 10.0

—Solver options

Type: IFixeu:I-step ;I Solver: IDisu:retE (no continuous states) ;I

Fixed-step size (fundamental sample time): Iautu:u

—Tasking and sample time options

Perindic sample time constraint: ISpEn:iﬁed ;I
Sample time properties: I [[1,0,00;[2,0,1];]
Tasking mode for periodic sample times: IMuIt‘I’askjng ;I

[T automatically handle rate transition for data transfer

[T Higher priority value indicates higher task priority

+ Continuous blocks execute by using an integration algorithm that runs at the base
sample rate. The base sample period is the greatest common denominator of all rates

3-14

Modeling for Multitasking Execution

in the model only when Periodic sample time constraint is set to Unconstrained
and Fixed step size is Auto.

* The continuous and discrete parts of the model can execute at different rates only if
the discrete part is executed at the same or a slower rate than the continuous part
and is an integer multiple of the base sample rate.

Multitasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers the operation of both SingleTasking
and MultiTasking Solver pane tasking modes.

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has been
forced into the order shown by assigning higher priorities to blocks F, E, and D. The
ordering shown is one possible valid execution ordering for this model. (See “Simulation
Phases in Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks. In a real-

time system, the execution order determines the order in which blocks execute within

a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.

OH

IF3

|n.| = — . 1 0 |:|:: KTs yin}=Cain}+Du(n) .
- » . »| > Vs L] Vi
Lr i o | ot i P - g e G
. M [m = D Out1
- B = D = F

Sine Wave . Discrete Fitter iti .
SampleTime=0.1 Rate Transition Sample Time=1 Fr{“E Transition Dis crete-Time Diorete State-Space

me) (Fast to Slow) (Slow & Fast) Integrator Sample Time=0.1

SampleTime=D 1

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.

3-15

3 Time-Based Schedu|ing

This example considers the execution of the above model when the solver Tasking mode
is MultiTasking. Block computations are executed under two tasks, prioritized by rate:

* The slower task, which gets the lower priority, is scheduled to run every second. This
is called the I second task.

* The faster task, which gets higher priority, is scheduled to run 10 times per second.
This 1s called the 0.1 second task. The 0.1 second task can preempt the 1 second task.

The following table shows, for each block in the model, the execution order, the task
under which the block runs, and whether the block has an output or update computation.
Blocks A and B do not have discrete states, and accordingly do not have an update
computation.

Task Allocation of Blocks in Multitasking Execution

Blocks Task Output Update
(in Execution Order)

E 0.1 second task Y Y

F 0.1 second task Y Y

D The Rate Transition block uses port- Y Y

based sample times.

Output runs at the output port sample
time under 0.1 second task.

Update runs at input port sample time
under 1 second task.

For more information on port-based
sample times, see “Inherit Sample
Times” in the Simulink documentation.

A 0.1 second task Y N

B The Rate Transition block uses port- Y N
based sample times.

Output runs at the output port sample
time under 0.1 second task.

For more information on port-based
sample times, see “Inherit Sample
Times” in the Simulink documentation.

C 1 second task Y Y

3-16

Modeling for Multitasking Execution

Real-Time Multitasking Execution

The next figure shows the scheduling of computations in MultiTasking solver mode
when the generated code is deployed in a real-time system. The generated program is
shown running in real time, as two tasks under control of interrupts from a 10 Hz timer.

1 SECOND
Output [ch— —
3 - .
5 J 2
=] =]
= =
. 2 a
Updata: g @_I .:gr
1
| -
Tima: 0.0 1.0
0.1 SECOND]
Output: [EFDAE] EFA] EFDARB
J J w [walil J J
oo 9 =
i | | 1 |
| |] I] I *
Tima: 00 (iR | 0.2 1.0 1.1

Simulated Multitasking Execution
The next figure shows the Simulink execution of the same model, in MultiTasking

solver mode. In this case, the Simulink engine runs the blocks in one thread of execution,
simulating multitasking. No preemption occurs.

3-17

3 Time-Based Scheduling

1SECOMD
BLOCKS
Cutput:
E] E 1
L L
Update: E E
| | N |,
| I i
Time: 00 10
0.1 SECOND
BLOCKS
ot [£757E]
Update: ..
1 l l 1 L,
1 | | | |
Time: 0 0.1 0.2 1.0 1.1

3-18

Handle Rate Transitions

Handle Rate Transitions

In this section...

“Rate Transitions” on page 3-19

“Data Transfer Problems” on page 3-21
“Data Transfer Assumptions” on page 3-21
“Rate Transition Block Options” on page 3-22
“Automatic Rate Transition” on page 3-25

“Visualize Inserted Rate Transition Blocks” on page 3-26

“Periodic Sample Rate Transitions” on page 3-28

Rate Transitions

Two periodic sample rate transitions can exist within a model:

+ A faster block driving a slower block

* A slower block driving a faster block

The following sections concern models with periodic sample times with zero offset only.
Other considerations apply to multirate models that involve asynchronous tasks. For
details on how to generate code for asynchronous multitasking, see “Asynchronous
Support” on page 4-2.

In multitasking and pseudomultitasking systems, differing sample rates can cause blocks
to be executed in the wrong order. To prevent possible errors in calculated data, you must
control model execution at these transitions. When connecting faster and slower blocks,
you or the Simulink engine must add Rate Transition blocks between them. Fast-to-slow
transitions are illustrated in the next figure.

3-19

3 Time-Based Scheduling

—>
—» T=1s » T =2s
—>
Faster Slower
Block Block
becomes
—
.| Port-based: R _
:: T=1s ”|Tin = 1s; Tout = 2s » T=2s
Faster Rate Transition Slower
Block Block

Slow-to-fast transitions are illustrated in the next figure.

—>
—» T=2s » T=1s
—>
Slower Faster
Block Block
becomes
—
R Port-based: R
:: T=2s »|Tin = 2s; Tout = 1s » T=1s
Slower Rate Transition Faster
Block Block

Note: Although the Rate Transition block offers a superset of the capabilities of the Unit
Delay block (for slow-to-fast transitions) and the Zero-Order Hold block (for fast-to-slow
transitions), you should use the Rate Transition block instead of these blocks.

3-20

Handle Rate Transitions

Data Transfer Problems

Rate Transition blocks deal with issues of data integrity and determinism associated
with data transfer between blocks running at different rates.

Data integrity: A problem of data integrity exists when the input to a block changes
during the execution of that block. Data integrity problems can be caused by
preemption.

Consider the following scenario:

+ A faster block supplies the input to a slower block.
The slower block reads an input value V; from the faster block and begins
computations using that value.

The computations are preempted by another execution of the faster block, which
computes a new output value V.

A data integrity problem now arises: when the slower block resumes execution, it
continues its computations, now using the “new” input value V5.

Such a data transfer is called unprotected. “Faster to Slower Transitions in Real
Time” on page 3-28 shows an unprotected data transfer.

In a protected data transfer, the output V; of the faster block is held until the slower
block finishes executing.

Deterministic versus nondeterministic data transfer: In a deterministic data transfer,
the timing of the data transfer is completely predictable, as determined by the sample
rates of the blocks.

The timing of a nondeterministic data transfer depends on the availability of data, the
sample rates of the blocks, and the time at which the receiving block begins to execute
relative to the driving block.

You can use the Rate Transition block to protect data transfers in your application

and make them deterministic. These characteristics are considered desirable in most
applications. However, the Rate Transition block supports flexible options that allow you
to compromise data integrity and determinism in favor of lower latency. The next section
summarizes these options.

Data Transfer Assumptions

3-21

3 Time-Based Schedu|ing

3-22

When processing data transfers between tasks, Simulink Coder makes these
assumptions:

* Data transitions occur between a single reading task and a single writing task.
* A read or write of a byte-sized variable is atomic.

* When two tasks interact through a data transition, only one of them can preempt the
other.

* For periodic tasks, the faster rate task has higher priority than the slower rate task;
the faster rate task preempts the slower rate task.

+ All tasks run on a single processor. Time slicing is not allowed.

* Processes do not crash or restart (especially while data is transferred between tasks).

Rate Transition Block Options

Several parameters of the Rate Transition block are relevant to its use in code generation
for real-time execution, as discussed below. For a complete block description, see Rate
Transition in the Simulink documentation.

The Rate Transition block handles periodic (fast to slow and slow to fast) and
asynchronous transitions. When inserted between two blocks of differing sample rates,
the Rate Transition block automatically configures its input and output sample rates for
the type of transition; you do not need to specify whether a transition is slow-to-fast or
fast-to-slow (low-to-high or high-to-low priorities for asynchronous tasks).

The critical decision you must make in configuring a Rate Transition block is the choice
of data transfer mechanism to be used between the two rates. Your choice is dictated by
considerations of safety, memory usage, and performance. As the Rate Transition block
parameter dialog box in the next figure shows, the data transfer mechanism is controlled
by two options.

Handle Rate Transitions

E! Function Block Parameters: Rate Transition

—RateTransition

Handle transfer of data between ports operating at different rates. Configuration
options allow vou ko trade ofF transfer delay and code efficiency For safety and
determinism of data transfer. The default configuration assures safe and
deterministic data transfer. The block's behavior depends on option settings andfor
the sample times of its input and output ports, Updating the block diagram causes
ket on the block's icon to indicate its behavior as Follows:

ZOH: Zero Order Hold
1/z: Unit Delay
Ef: Copy input to oukput under semaphore contral
Db_buf; Copy inpuk to output, using double buffers
Copy! Unpratected copy From input to output
NaOp: Mo Operation
Mixed: Expanded to multiple blocks with different
behaviors
—Parameters

[V Ensure data integrity duting data transfer
¥ Ensure deterministic data transfer (masimurn delay)

Initial conditions:

jo

CQukput port sample time options: |Specify ;I

Cutpuk port sample time:

-1

ok Cancel | Help | Apply |

* Ensure data integrity during data transfer: When this option is on, data
transferred between rates maintains its integrity (the data transfer is protected).
When this option is off, the data might not maintain its integrity (the data transfer is
unprotected). By default, Ensure data integrity during data transfer is on.

* Ensure deterministic data transfer (maximum delay): This option is supported
for periodic tasks with an offset of zero and fast and slow rates that are multiples
of each other. Enable this option for protected data transfers (when Ensure data
integrity during data transfer is on). When this option is on, the Rate Transition
block behaves like a Zero-Order Hold block (for fast to slow transitions) or a Unit
Delay block (for slow to fast transitions). The Rate Transition block controls the
timing of data transfer in a completely predictable way. When this option is off, the
data transfer is nondeterministic. By default, Ensure deterministic data transfer
(maximum delay) is on for transitions between periodic rates with an offset of zero;
for asynchronous transitions, it cannot be selected.

3-23

3 Time-Based Schedu|ing

3-24

Thus the Rate Transition block offers three modes of operation with respect to data
transfer. In order of level of safety:

Protected/Deterministic (default): This is the safest mode. The drawback of this
mode is that it introduces deterministic latency into the system for the case of slow-
to-fast periodic rate transitions. For that case, the latency introduced by the Rate

Transition block is one sample period of the slower task. For the case of fast-to-slow
periodic rate transitions, the Rate Transition block introduces no additional latency.

Protected/NonDeterministic: In this mode, for slow-to-fast periodic rate
transitions, data integrity is protected by double-buffering data transferred between
rates. For fast-to-slow periodic rate transitions, a semaphore flag is used. The blocks
downstream from the Rate Transition block use the latest available data from the
block that drives the Rate Transition block. Maximum latency is less than or equal to
one sample period of the faster task.

The drawbacks of this mode are its nondeterministic timing. The advantage of this
mode is its low latency.

Unprotected/NonDeterministic: This mode is not recommended for mission-
critical applications. The latency of this mode is the same as for Protected/
NonDeterministic mode, but memory requirements are reduced since neither double-
buffering nor semaphores are required. That is, the Rate Transition block does
nothing in this mode other than to pass signals through; it simply exists to notify
you that a rate transition exists (and can cause generated code to compute incorrect
answers). Selecting this mode, however, generates the least amount of code.

Note In unprotected mode (Ensure data integrity during data transfer option
off), the Rate Transition block does nothing other than allow the rate transition to
exist in the model.

Rate Transition Blocks and Continuous Time

The sample time at the output port of a Rate Transition block can only be discrete

or fixed in minor time step. This means that when a Rate Transition block inherits
continuous sample time from its destination block, it treats the inherited sample time as
Fixed in Minor Time Step. Therefore, the output function of the Rate Transition block
runs only at major time steps. If the destination block sample time is continuous, Rate
Transition block output sample time is the base rate sample time (if solver is fixed-step),
or zero-order-hold-continuous sample time (if solver is variable-step).

Handle Rate Transitions

Automatic Rate Transition

The Simulink engine can detect mismatched rate transitions in a multitasking model
during an update diagram and automatically insert Rate Transition blocks to handle
them. To enable this, in the Solver pane of model configuration parameters, select
Automatically handle rate transition for data transfer. The default setting for this
option is off. When you select this option:

* Simulink handles transitions between periodic sample times and asynchronous tasks.
+ Simulink inserts hidden Rate Transition blocks in the block diagram.

+ Simulink Coder generates code for the Rate Transition blocks that were automatically
inserted. This code is identical to the code generated for Rate Transition blocks that
were inserted manually.

* Automatically inserted Rate Transition blocks operate in protected mode for periodic
tasks and asynchronous tasks. You cannot alter this behavior. For periodic tasks,
automatically inserted Rate Transition blocks operate with the level of determinism
specified by the Deterministic data transfer parameter in the Solver pane.

The default setting is Whenever possible, which enables determinism for data
transfers between periodic sample-times that are related by an integer multiple. For
more information, see “Deterministic data transfer”. To use other modes, you must
insert Rate Transition blocks and set their modes manually.

For example, in this model, SineWave2 has a sample time of 2, and SineWave3 has a
sample time of 3.

|IJ—|_|DSF'
|/

SineWave2

Yy

Froduct Dt

|IJ—|_|DSF'
|/

SineWave3

When you select Automatically handle rate transition for data transfer, Simulink
inserts a Rate Transition block between each Sine Wave block and the Product block.
The inserted blocks have the parameter values needed to reconcile the Sine Wave block
sample times.

3-25

3 Time-Based Schedu|ing

If the input port and output port data sample rates in a model are not multiples of
each other, Simulink inserts a Rate Transition block whose sample rate is the greatest
common divisor (GCD) of the two rates. If no other block in the model contains this new
rate, an error occurs during simulation. In this case, you must insert a Rate Transition
block manually.

Visualize Inserted Rate Transition Blocks

When you select the Automatically handle rate transition for data transfer option,
Simulink inserts Rate Transition blocks in the paths that have mismatched transition
rates. These blocks are hidden by default. To visualize the inserted blocks, update the
diagram. Badge labels appear in the model and indicate where Simulink inserted Rate
Transition blocks during the compilation phase. For example, in this model, three Rate
Transition blocks were inserted between the two Sine Wave blocks and the Multiplexer
and Integrator when the model compiled. The ZOH and DbBuf badge labels indicate

these blocks.
L JJLLL“J KTs | D3 _
Sine Wave?2 ; ——» smouth

Discrete-Time To Workspace5
Integrator2

_|""'|_IU| I

SineWave3

You can show or hide badge labels using the Display > Signals and Ports > Hidden
Rate Transition Block Indicators setting.

To configure the hidden Rate Transition blocks, right click on a badge label and click on
Insert rate transition block to make the block visible.

3-26

Handle Rate Transitions

) g

KTs | D3 _
Sine Wave?2 RT2 ; L » Smouts
n Discrete-Time To Workspaced
ﬁ Integrator2

RT1

ﬁU > |

SineWave3 RT ‘

When you make hidden Rate Transition blocks visible:

You can see the type of Rate Transition block inserted as well as the location in the
model.

You can set the Initial Conditions of these blocks.

You can change block parameters for rate transfer.

Validate the changes to your model by updating your diagram.

Y

JJLLLLIJ D2 D3
] KTs | D3
Sine Wave?2

1 —® smouth
Z_

Discrete-Time To Workspace5
g Integrator2

D3
ﬂu_. |

SineWave3 |

Displaying inserted Rate Transition blocks is not compatible with:

3-27

3 Time-Based Schedu|ing

3-28

* Concurrent execution environment

+ Export-function models

To learn more about the types of Rate Transition blocks, see Rate Transition.

Periodic Sample Rate Transitions

These sections describe cases in which Rate Transition blocks are required for periodic
sample rate transitions. The discussion and timing diagrams in these sections are
based on the assumption that the Rate Transition block is used in its default (protected/
deterministic) mode; that is, the Ensure data integrity during data transfer and
Ensure deterministic data transfer (maximum delay) options are both on. These
are the settings used for automatically inserted Rate Transition blocks.

Faster to Slower Transitions in a Simulink Model

In a model where a faster block drives a slower block having direct feedthrough, the
outputs of the faster block are computed first. In simulation intervals where the slower
block does not execute, the simulation progresses more rapidly because there are fewer
blocks to execute. The next figure illustrates this situation.

t0 t1 t2 t3
— A A y N A
—»| T=1s p T=2s
— T=1s| T=2s |T=1s|T=1s| T=2s |T=1s
Faster Slower
Block Block Time N

A Simulink simulation does not execute in real time, which means that it is not bound
by real-time constraints. The simulation waits for, or moves ahead to, whatever tasks
are required to complete simulation flow. The actual time interval between sample time
steps can vary.

Faster to Slower Transitions in Real Time

In models where a faster block drives a slower block, you must compensate for the fact
that execution of the slower block might span more than one execution period of the
faster block. This means that the outputs of the faster block can change before the slower
block has finished computing its outputs. The next figure shows a situation in which this

Handle Rate Transitions

problem arises (T = sample time). Note that lower priority tasks are preempted by higher
priority tasks before completion.

A

N
2 Sec @ T=2s I@ T=2s
§T=1s—>T=2s Task d) C) C
Faster Slower A 5
Block Block
T

T=1s @ T=1s @ T=1s @

Time >

=1s @

1 Sec A 5 é > A 5
Task

@ The faster task (T=1s) completes.
@ Higher priority preemption occurs.

@ The slower task (T=2s) resumes and its inputs
have changed. This leads to unpredictable results.

In the above figure, the faster block executes a second time before the slower block has
completed execution. This can cause unpredictable results because the input data to the
slow task 1s changing. Data might not maintain its integrity in this situation.

To avoid this situation, the Simulink engine must hold the outputs of the 1 second
(faster) block until the 2 second (slower) block finishes executing. The way to accomplish
this is by inserting a Rate Transition block between the 1 second and 2 second blocks.
The input to the slower block does not change during its execution, maintaining data
integrity.

—>
— T=1s [—Tin=1Tout=2—» T=2s
e

Faster Block Rate Transition Slower Block

It is assumed that the Rate Transition block is used in its default (protected/
deterministic) mode.

The Rate Transition block executes at the sample rate of the slower block, but with the
priority of the faster block.

3-29

3 Time-Based Schedu|ing

3-30

0)

A
%assﬁc T=2s T=2s

Vad Yad
0 1 t 3
A A A A
1Sec | 1-45| RT T=1s T=1s| RT T=1s
Task
Time >

When you add a Rate Transition block, the block executes before the 2 second block (its
priority is higher) and its output value is held constant while the 2 second block executes
(it executes at the slower sample rate).

Slower to Faster Transitions in a Simulink Model

In a model where a slower block drives a faster block, the Simulink engine again
computes the output of the driving block first. During sample intervals where only the
faster block executes, the simulation progresses more rapidly.

The next figure shows the execution sequence.

t0 t1 t2 t3
_> A A F N V' N
—»| T=2s » T=1s
- T=2s |T=1s|T=1s| T=2s |T=1s|T=1s
Slower Faster
Block Block Time ,

As you can see from the preceding figures, the Simulink engine can simulate models with
multiple sample rates in an efficient manner. However, a Simulink simulation does not
operate in real time.

Slower to Faster Transitions in Real Time

In models where a slower block drives a faster block, the generated code assigns the
faster block a higher priority than the slower block. This means the faster block is
executed before the slower block, which requires special care to avoid incorrect results.

Handle Rate Transitions

L

T=2s —P» T=1s

Block Faster
Block

t0 t2
V' N
2 Sec 2 T=2s
Task D Jw N B
t2 t3 t4
A V' N A
1 Sec T=1s T=1s T=1s
Task

Time

v

@ The faster block executes a second time prior
to the completion of the slower block.

@ The faster block executes before the slower block.

This timing diagram illustrates two problems:

+ Execution of the slower block is split over more than one faster block interval. In
this case the faster task executes a second time before the slower task has completed
execution. This means the inputs to the faster task can have incorrect values some of

the time.

+ The faster block executes before the slower block (which is backward from the way
a Simulink simulation operates). In this case, the 1 second block executes first; but
the inputs to the faster task have not been computed. This can cause unpredictable

results.

To eliminate these problems, you must insert a Rate Transition block between the slower
and faster blocks.

—>
— T=2s |—PpiTin=2 Tout=1p—Pp| T=1s
—
Slower Rate Transition Faster
Block Block

It is assumed that the Rate Transition block is used in its default (protected/
deterministic) mode.

3-31

3 Time-Based Schedu|ing

2 Sec
Task

1 Sec
Task

3-32

The next figure shows the timing sequence that results with the added Rate Transition

block.
(@)

_ RT RT
/’ T=2s update update
t0
V' N
output T=1s T=1s @

v

Time

Three key points about transitions in this diagram (refer to circled numbers):

1 The Rate Transition block output runs in the 1 second task, but at a slower rate (2
seconds). The output of the Rate Transition block feeds the 1 second task blocks.

2 The Rate Transition update uses the output of the 2 second task to update its
internal state.

3 The Rate Transition output in the 1 second task uses the state of the Rate Transition
that was updated in the 2 second task.

The first problem is alleviated because the Rate Transition block is updating at a slower
rate and at the priority of the slower block. The input to the Rate Transition block (which
is the output of the slower block) is read after the slower block completes executing.

The second problem is alleviated because the Rate Transition block executes at a slower
rate and its output does not change during the computation of the faster block it is
driving. The output portion of a Rate Transition block is executed at the sample rate of
the slower block, but with the priority of the faster block. Since the Rate Transition block
drives the faster block and has effectively the same priority, it is executed before the
faster block.

Handle Rate Transitions

Note This use of the Rate Transition block changes the model. The output of the slower

block is now delayed by one time step compared to the output without a Rate Transition
block.

3-33

3 Time-Based Schedu|ing

Configure Time-Based Scheduling

3-34

In this section...

“Configure Start and Stop Times” on page 3-34
“Configure the Solver Type” on page 3-35

“Configure the Tasking Mode” on page 3-35

For details about solver options, see “Solver Pane” in the Simulink reference
documentation.

Configure Start and Stop Times

The Stop time must be greater than or equal to the Start time. If the stop time is
zero, or if the total simulation time (Stop minus Start) is less than zero, the generated
program runs for one step. If the stop time is set to inF, the generated program runs
indefinitely.

When using the GRT or Wind River® Tornado® (VxWorks® 5.x) targets, you can override
the stop time when running a generated program from the Microsoft Windows command
prompt or UNIX' command line. To override the stop time that was set during code
generation, use the —tf switch.

model -tf n
The program runs for n seconds. If n = in¥, the program runs indefinitely.

Certain blocks have a dependency on absolute time. If you are designing a program that
is intended to run indefinitely (Stop time = inf), and your generated code does not use
the rtModel data structure (that is, it uses simstructs instead), you must not use
these blocks. See “Absolute Time Limitations” on page 2-12 for a list of blocks that can
potentially overflow timers.

If you know how long an application that depends on absolute time needs to run, you can
prevent the timers from overflowing and force the use of optimal word sizes by specifying
the App